Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 154: 186-194, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681963

ABSTRACT

Our previous mouse studies demonstrated that mean bioavailability of exendin-4, which is an injectable glucagon-like peptide-1 (GLP-1) analogue whose molecular weight (Mw) and isoelectric point (pI) are ca. 4.2 kDa and 4.5, respectively, administered nasally with poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing D-octaarginine, which is a typical cell-penetrating peptide, was 20% relative to subcutaneous administration even though it was less than 1% when exendin-4 alone was given nasally. The studies also revealed that the absorption-enhancing ability of D-octaarginine-linked PNVA-co-AA for exendin-4 was statistically equivalent to that of sodium salcaprozate (SNAC), which is an absorption enhancer formulated in tablets of semaglutide approved recently as an orally available GLP-1 analogue. From a perspective of clinical application of our technology, we have separately developed hyaluronic acid modified with L-octaarginine via a tetraglycine spacer which would be degraded in biological conditions. The present study revealed that tetraglycine-L-octaarginine-linked hyaluronic acid enhanced nasal absorption of exendin-4 in mice, as did D-octaarginine-linked PNVA-co-AA. There was no significant difference in absorption-enhancing abilities between the hyaluronic acid derivative and SNAC when octreotide (Mw: ca. 1.0 kDa, pI: 8.3) and lixisenatide (Mw: ca. 4.9 kDa, pI: 9.5) were used as a model protein drug. On the other hand, SNAC did not significantly enhance nasal absorption of somatropin (Mw: ca. 22.1 kDa, pI: 5.3) when compared with absorption enhancer-free conditions. Substitution of SNAC with tetraglycine-L-octaarginine-linked hyaluronic acid resulted in a 5-fold increase in absolute bioavailability of somatropin with statistical significance. It appeared that pI hardly ever influenced absorption-enhancing abilities of both enhancers. Results indicated that our polysaccharide derivative would be a promising absorption enhancer which delivers biologics applied on the nasal mucosa into systemic circulation and was of greater advantage than SNAC for enhancing nasal absorption of protein drugs with a larger Mw.


Subject(s)
Hyaluronic Acid/administration & dosage , Nasal Absorption/drug effects , Oligopeptides/administration & dosage , Peptides/administration & dosage , Administration, Intranasal , Animals , Exenatide/administration & dosage , Exenatide/chemistry , Exenatide/pharmacokinetics , Human Growth Hormone/administration & dosage , Human Growth Hormone/chemistry , Human Growth Hormone/pharmacokinetics , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacokinetics , Mice , Nasal Absorption/physiology , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Octreotide/administration & dosage , Octreotide/chemistry , Octreotide/pharmacokinetics , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Peptides/chemistry , Peptides/pharmacokinetics
2.
Pharm Res ; 34(11): 2362-2370, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28791533

ABSTRACT

PURPOSE: We previously demonstrated that the immunostimulatory activity of CpG DNA is increased by the formation of polypod-like structures. The present study was designed to elucidate the mechanism underlying this increase. METHODS: Tripodna (three pods) and hexapodna (six pods) were prepared. The cellular uptake of Alexa Fluor 488-labeled DNA samples was examined in several cell lines by measuring the MFI of cells. TNF-α release from RAW264.7 cells was measured after addition of polypodna containing CpG motifs. Dissociation of double stranded DNA was evaluated using FRET. RESULTS: Tripodna and hexapodna were efficiently taken up by macrophage-like RAW264.7 cells and dendritic DC2.4 cells, but not by fibroblast or endothelial cell lines. The uptake by RAW264.7 cells was highest for hexapodna, followed by tripodna, dsDNA, and ssDNA. The release of TNF-α from RAW264.7 cells was also highest for hexapodna. The ratio of TNF-α release to cellular uptake was highest for ssDNA, and lowest for dsDNA. Tripodna and hexapodna were more easily dissociated into single strands after cellular uptake than was dsDNA. CONCLUSIONS: The efficient cellular uptake and prompt dissociation into single strands can be directly related to the high immunostimulatory activity of polypod-like structured DNAs containing CpG motifs.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Animals , Cell Culture Techniques , Cell Line , DNA/chemistry , DNA/immunology , Fluorescent Dyes/chemistry , Humans , Immunization , Mice , Molecular Structure , Nucleic Acid Conformation , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL