Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 18(5): 920-928, 2019 05.
Article in English | MEDLINE | ID: mdl-30872380

ABSTRACT

TAS-121 is a novel orally active selective covalent inhibitor of the mutant EGFR. We performed preclinical characterization of TAS-121 and compared its efficacy and selectivity for common EGFR mutations (Ex19del and L858R), first- and second- generation EGFR-tyrosine kinase inhibitor (EGFR-TKI) resistance mutation (T790M), and uncommon mutations (G719X and L861Q) with those of other EGFR-TKIs. We also commenced investigation of the clinical benefits of TAS-121. The IC50 for intracellular EGFR phosphorylation was determined by using Jump-In GripTite HEK293 cells transiently transfected with EGFR expression vectors. Mouse xenograft models were used to evaluate the antitumor activity of TAS-121. TAS-121 potently inhibited common activating and resistance EGFR mutations to the same extent as another third-generation EGFR-TKI (osimertinib). In addition, TAS-121 showed equivalent inhibitory activity against some uncommon mutations such as G719X and L861Q. Furthermore, TAS-121 demonstrated greater selectivity for mutant EGFRs versus the wild-type EGFR compared with other EGFR-TKIs. Moreover, TAS-121 displayed antitumor activity in SW48 (EGFR G719S) and NCI-H1975 (EGFR L858R/T790M) xenograft models, and achieved an objective response in patients with NSCLC with EGFR mutations including G719A mutation. In conclusion, TAS-121 is a novel third-generation EGFR-TKI and demonstrates antitumor activities in patients with NSCLC expressing either common or uncommon EGFR mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Heterografts , Humans , Mice , Mutation/genetics
2.
Bioorg Med Chem ; 17(19): 6971-82, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19720539

ABSTRACT

A series of trans-3-oxospiro[(aza)isobenzofuran-1(3H),1'-cyclohexane]-4'-carboxamide derivatives were synthesized to identify potent NPY Y5 receptor antagonists. Of the compounds, 21j showed high Y5 binding affinity, metabolic stability and brain and cerebrospinal fluid (CSF) penetration, and low susceptibility to P-glycoprotein transporters. Oral administration of 21j significantly inhibited the Y5 agonist-induced food intake in rats with a minimum effective dose of 1mg/kg. This compound was selected for proof-of-concept studies in human clinical trials.


Subject(s)
Amides/chemical synthesis , Benzofurans/chemical synthesis , Receptors, Neuropeptide Y/antagonists & inhibitors , Spiro Compounds/chemical synthesis , ATP-Binding Cassette Transporters/metabolism , Administration, Oral , Amides/pharmacology , Animals , Benzofurans/pharmacology , Brain/metabolism , Cerebrospinal Fluid/metabolism , Drug Stability , Eating/drug effects , Rats , Spiro Compounds/pharmacology
3.
Bioorg Med Chem Lett ; 19(18): 5436-9, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19679469

ABSTRACT

A series of trans-3-oxospiro[(aza)isobenzofuran-1(3H),1'-cyclohexane]-4'-carboxamide derivatives were synthesized and profiled for NPY Y5 binding affinity, brain and CSF penetrability in rats, and susceptibility to human and mouse P-glycoprotein transporters in order to develop a PET ligand. Compound 12b exhibited an acceptable profile for a PET ligand, and [(11)C]12b was successfully utilized in clinical settings as a Y5 PET ligand.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/methods , Radioligand Assay/methods , Receptors, Neuropeptide Y/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Brain/metabolism , Cell Line , Cerebrospinal Fluid/diagnostic imaging , Humans , Ligands , Mice , Plasma/diagnostic imaging , Protein Binding , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(15): 4450-4, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19540111

ABSTRACT

The synthesis and structure-activity-relationships (SARs) of novel 2-(pyridine-2-yl)-1H-benzimidazole glucokinase activators are described. Systematic modification of benzimidazole lead 5a identified from a high-throughput screening led to the discovery of a potent and metabolically stable glucokinase activator 16p(R) with greater structural diversity from GKAs reported to date. The compound also demonstrated acute oral glucose lowering efficacy in rat OGTT model.


Subject(s)
Benzimidazoles/chemical synthesis , Glucokinase/metabolism , Allosteric Site , Animals , Benzimidazoles/pharmacology , Binding Sites , Chemistry, Pharmaceutical/methods , Diabetes Mellitus, Experimental/drug therapy , Drug Design , Enzyme Activation , Glucose Tolerance Test , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Models, Chemical , Molecular Conformation , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem ; 17(14): 5015-26, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19525116

ABSTRACT

Spiroindoline urea derivatives, designed to act as NPY Y5 receptor antagonists, were synthesized and their structure-activity relationships were investigated. Of these derivatives, compound 3a showed good Y5 binding affinity with favorable pharmacokinetic properties. Compound 3a significantly inhibited bPP Y5 agonist-induced food intake in rats, and suppressed body weight gain in DIO mice.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacokinetics , Biological Availability , Body Weight/drug effects , Eating/drug effects , Indoles/chemical synthesis , Indoles/pharmacokinetics , Mice , Mice, Inbred C57BL , Molecular Structure , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Neuropeptide Y/agonists , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(13): 3511-6, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19464889

ABSTRACT

Continuing medicinal chemistry studies to identify spiropiperidine-derived NPY Y5 receptor antagonists are described. Aryl urea derivatives of a variety of spiropiperidines were tested for their NPY Y5 receptor binding affinities. Of the spiropiperidines so far examined, spiro[3-oxoisobenzofurane-1(3H),4'-piperidine] was a useful scaffold for producing orally active NPY Y5 receptor antagonists. Oral administration of 5c significantly inhibited the Y5 agonist-induced food intake in rats with a minimum effective dose of 3mg/kg. In addition, this compound was efficacious in decreasing body weight in diet-induced obese mice.


Subject(s)
Anti-Obesity Agents/chemistry , Piperidines/chemistry , Receptors, Neuropeptide Y/antagonists & inhibitors , Spiro Compounds/chemistry , Urea/analogs & derivatives , Administration, Oral , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacology , Eating , Humans , Mice , Piperidines/chemical synthesis , Piperidines/pharmacology , Rats , Receptors, Neuropeptide Y/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Weight Loss
7.
Bioorg Med Chem Lett ; 19(6): 1564-8, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19243937

ABSTRACT

A series of spiroindoline-3,4'-piperidine derivatives were synthesized and evaluated for their binding affinities and antagonistic activities at Y5 receptors. Potent Y5 antagonists were tested for their oral bioavailabilities and brain penetration in rats. Some of the antagonists showed good oral bioavailability and/or good brain penetration. In particular, compound 6e was orally bioavailable and brain penetrant, and oral administration of 6e inhibited bPP-induced food intake in rats with a minimum effective dose of 10mg/kg.


Subject(s)
Chemistry, Pharmaceutical/methods , Indoles/administration & dosage , Indoles/pharmacology , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/chemistry , Administration, Oral , Amines/chemistry , Animals , Biological Availability , Brain/drug effects , Drug Design , Inhibitory Concentration 50 , Isocyanates/chemistry , Models, Chemical , Peptide Library , Rats , Urea/chemistry
8.
J Med Chem ; 51(15): 4765-70, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18637668

ABSTRACT

(9S)-9-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one ((S)-1) was identified as a selective and orally active neuropeptide Y Y5 receptor antagonist. The structure-activity relationship for this structural class was investigated and showed that limited substitution on the phenyl ring was tolerated and that modification of the 4,4-dimethyl group of the cyclohexenone and the 3,3-dimethyl group of the xanthenone parts slightly improved potency. The plasma concentration-time profile after oral administration of (S)-1 in Sprague-Dawley (SD) rats showed significant in vivo racemization of (S)-1 and that (S)-1 is cleared much more quickly than (R)-1. The duration of (S)-1 in SD rats after oral administration of (RS)-1 racemate was twice as long as that following oral administration of (S)-1. The C max values of (S)-1 after administration of (S)-1 and (RS)-1 were comparable, and the brain to plasma ratio for (S)-1 was 0.34 in SD rats. In our acute D-Trp (34)NPY-induced food intake model, both (S)-1 and (RS)-1 showed potent and dose-dependent efficacy. Therefore, the use of (RS)-1 is suitable for studies that require sustained plasma exposure of (S)-1.


Subject(s)
Cyclohexanones/administration & dosage , Cyclohexanones/chemistry , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Xanthenes/administration & dosage , Xanthenes/chemistry , Administration, Oral , Animal Feed , Animals , Blood-Brain Barrier/metabolism , Cell Line , Cyclohexanones/chemical synthesis , Cyclohexanones/metabolism , Humans , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Xanthenes/chemical synthesis , Xanthenes/metabolism
9.
Bioorg Med Chem ; 14(22): 7501-11, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16919461

ABSTRACT

A series of phenylpiperazine derivatives were synthesized and evaluated for their neuropeptide Y (NPY) Y5 receptor antagonistic activities. The benzindane portion of 2 was replaced by 1-phenylpiperazine, resulting in novel urea derivative 3f. Subsequent optimization of the phenylpiperazine template by substitution of the phenyl moiety resulted in a series of (2-methanesulfonamidephenyl)piperazine derivatives that showed potent binding affinity and antagonistic activity for the Y5 receptor.


Subject(s)
Piperazines/chemistry , Receptors, Neuropeptide Y/antagonists & inhibitors , Humans , Molecular Structure , Piperazines/chemical synthesis , Receptors, Neuropeptide Y/metabolism , Structure-Activity Relationship
10.
J Med Chem ; 46(5): 666-9, 2003 Feb 27.
Article in English | MEDLINE | ID: mdl-12593644

ABSTRACT

Novel arylpyrazole derivatives were synthesized and evaluated as neuropeptide Y (NPY) Y5 receptor antagonists. Compound (-)-7, which features a novel chiral 2,3-dihydro-1H-cyclopenta[a]naphthalene moiety, showed good binding affinity and antagonistic activity for the Y5 receptor. After intracerebroventricular administration in SD rats, (-)-7 significantly inhibited food intake that was induced by the centrally administered Y5-preferring agonist, bovine pancreatic polypeptide, but had only a negligible effect on NPY-induced feeding.


Subject(s)
Brain/metabolism , Naphthalenes/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Neuropeptide Y/antagonists & inhibitors , Administration, Oral , Animals , Cattle , Eating/drug effects , Humans , Injections, Intraventricular , Naphthalenes/pharmacokinetics , Naphthalenes/pharmacology , Pancreatic Polypeptide/pharmacology , Permeability , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...