Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 26(9): 1976-85, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22948489

ABSTRACT

The PML-RARA fusion protein is found in approximately 97% of patients with acute promyelocytic leukemia (APL). APL can be associated with life-threatening bleeding complications when undiagnosed and not treated expeditiously. The PML-RARA fusion protein arrests maturation of myeloid cells at the promyelocytic stage, leading to the accumulation of neoplastic promyelocytes. Complete remission can be obtained by treatment with all-trans-retinoic acid (ATRA) in combination with chemotherapy. Diagnosis of APL is based on the detection of t(15;17) by karyotyping, fluorescence in situ hybridization or PCR. These techniques are laborious and demand specialized laboratories. We developed a fast (performed within 4-5 h) and sensitive (detection of at least 10% malignant cells in normal background) flow cytometric immunobead assay for the detection of PML-RARA fusion proteins in cell lysates using a bead-bound anti-RARA capture antibody and a phycoerythrin-conjugated anti-PML detection antibody. Testing of 163 newly diagnosed patients (including 46 APL cases) with the PML-RARA immunobead assay showed full concordance with the PML-RARA PCR results. As the applied antibodies recognize outer domains of the fusion protein, the assay appeared to work independently of the PML gene break point region. Importantly, the assay can be used in parallel with routine immunophenotyping for fast and easy diagnosis of APL.


Subject(s)
Flow Cytometry , Immunoassay , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/metabolism , Oncogene Proteins, Fusion/metabolism , Adult , Case-Control Studies , Child , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 17/genetics , Female , Humans , Leukemia, Promyelocytic, Acute/immunology , Male , Oncogene Proteins, Fusion/immunology , Polymerase Chain Reaction , Sensitivity and Specificity , Tumor Cells, Cultured
2.
Leukemia ; 23(6): 1106-17, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19387467

ABSTRACT

BCR-ABL fusion proteins show increased signaling through their ABL tyrosine kinase domain, which can be blocked by specific inhibitors, thereby providing effective treatment. This makes detection of BCR-ABL aberrations of utmost importance for diagnosis, classification and treatment of leukemia patients. BCR-ABL aberrations are currently detected by karyotyping, fluorescence in situ hybridization (FISH) or PCR techniques, which are time consuming and require specialized facilities. We developed a simple flow cytometric immunobead assay for detection of BCR-ABL fusion proteins in cell lysates, using a bead-bound anti-BCR catching antibody and a fluorochrome-conjugated anti-ABL detection antibody. We noticed protein stability problems in lysates caused by proteases from mature myeloid cells. This problem could largely be solved by adding protease inhibitors in several steps of the immunobead assay. Testing of 145 patient samples showed fully concordant results between the BCR-ABL immunobead assay and reverse transcriptase PCR of fusion gene transcripts. Dilution experiments with BCR-ABL positive cell lines revealed sensitivities of at least 1%. We conclude that the BCR-ABL immunobead assay detects all types of BCR-ABL proteins in leukemic cells with high specificity and sensitivity. The assay does not need specialized laboratory facilities other than a flow cytometer, provides results within approximately 4 h, and can be run in parallel to routine immunophenotyping.


Subject(s)
Flow Cytometry/methods , Fusion Proteins, bcr-abl/analysis , Immunoassay/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Antibodies, Monoclonal , Flow Cytometry/standards , Humans , Immunoassay/standards , Polymerase Chain Reaction , Protease Inhibitors , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL