Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Pharm ; 631: 122534, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36563797

ABSTRACT

The importance of residence time distribution modeling is acknowledged as a tool for enabling material tracking and control within a continuous manufacturing line in order to safeguard both product quality and production efficiency. One of the first unit-operations into a continuous direct compression line (i.e. CDC-line) worthwhile doing extensive RTD-analysis upon are the LIW-feeders since they dose the ingredients in a controlled way following the label claim and hence can directly influence critical quality attributes like content uniformity. An NIR measurement method was developed determining the RTD of selected powders at specific feeder settings. Step-change experiments using sodium saccharin as a tracer were conducted. In order to gain and in depth understanding of the material flow, spatial samples throughout the hopper were taken at predefined timepoints during the step change experiments. This revealed the presence of a bypass trajectory along the edges of the agitator, while in the center of the agitator an inner mixing volume in which the tracer concentration lags behind seemed to be present. Finally, a model based on a plug flow and continuous stirred tank reactor was evaluated. The fitted model was not able to capture this complex flow behavior and shows the need for an extended compartmental model distinguishing between a bypass trajectory formed by the agitator and an inner mixing volume.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Powders , Pharmaceutical Vehicles , Pressure
2.
Int J Pharm ; 605: 120785, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34111548

ABSTRACT

In recent years, the interest in continuous manufacturing techniques, such as twin-screw wet granulation, has increased. However, the understanding of the influence of the combination of raw material properties and process settings upon the granule quality attributes is still limited. In this study, a T-shaped partial least squares (TPLS) model was developed to link raw material properties, the ratios in which these raw materials were combined and the applied process parameters for the twin-screw wet granulation process with the granule quality attributes. In addition, the predictive ability of the TPLS model was used to find a suitable combination of formulation composition and twin-screw granulation process settings for a new API leading to desired granule quality attributes. Overall, this study helped to better understand the link between raw material properties, formulation composition and process settings on granule quality attributes. Moreover, as TPLS can provide a reasonable starting point for formulation and process development for new APIs, it can reduce the experimental development efforts and consequently the consumption of expensive (and often limited available) new API.


Subject(s)
Technology, Pharmaceutical , Drug Compounding , Least-Squares Analysis , Particle Size , Tablets
3.
Water Sci Technol ; 81(8): 1636-1645, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32644957

ABSTRACT

A literature screening on computational fluid dynamics (CFD) modelling in water treatment applications showed a vast range of validation ranging from no validation at all, over residence time distribution (RTD) and tracer testing, to velocity field, species concentration and, finally, turbulence properties measurements. The validation level also differs depending on process scale (laboratory, pilot, full) and type of system (rheology, single phase vs. multiphase). Given the fact that CFD is in more widespread use, a discussion on the extent and need of validation needs to be initiated. This paper serves as a discussion starter on the topic.


Subject(s)
Wastewater , Water Purification , Computer Simulation , Hydrodynamics , Rheology , Water
4.
Water Sci Technol ; 81(8): 1668-1681, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32644960

ABSTRACT

Dissolved air flotation (DAF) has received more attention recently as a separation technique in both drinking water as well as wastewater treatment. However, the process as well as the preceding flocculation step is complex and not completely understood. Given the multiphase nature of the process, fluid dynamics studies are important to understand and optimize the DAF system in terms of operation and design. The present study is intended towards a comprehensive computational analysis for design optimization of the treatment plant in Kluizen, Belgium. Setting up the modelling framework involving the multiphase flow problem is briefly discussed. 3D numerical simulations on a scaled down model of the DAF design were analysed. The flow features give better confidence, but the flocs escape through the outlet still prevails which is averse to the system performance. In order to improve the performance and ease of maintenance, design modifications have been proposed by using a perforated tube for water extraction and are found to be satisfactory. The discussion is further reinforced through validating the numerical model against the experimental findings for stratified flow conditions.


Subject(s)
Drinking Water , Water Purification , Air , Belgium , Flocculation
5.
Int J Pharm ; 584: 119451, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32454132

ABSTRACT

Wetting is the initial stage of wet granulation processes during which the first contact between the powder and the liquid occurs. Wetting is a critical step to allow granule growth and consolidation, but also to ensure uniform active pharmaceutical ingredient (API) distribution over all granule size fractions. A physical understanding of the wetting stage is therefore crucial to design a robust granulation process. In twin-screw granulation, wetting is physically separated from granule consolidation, growth, breakage and attrition. The present study used this particularity to investigate the wetting step in such a way that the fundamental mechanisms governing the wetting can be linked and understood. A modified granulator barrel was used allowing the collection of granules immediately after the wetting. A low drug-loaded pharmaceutical formulation containing a poorly soluble and poorly wettable API was used for this investigation. Granules obtained after the wetting zone were analysed for granule size distribution, API distribution over the different size fractions and granule temperature. It was found that "wetting efficiency" (i.e., fraction of powder being nucleated during the wetting stage) could be predicted using an energy balance based on in-line measurement of the granule temperature. Wetting efficiency could moreover be linked to final granule quality attributes (i.e., granule size distribution) at the outlet of the granulator. It was further demonstrated that granule growth and consolidation could only be achieved when complete wetting was achieved in the wetting zone of the granulator. This study suggested a methodology based on in-line temperature measurements to quickly determine wetting efficiency. The described methodology could therefore be used as a tool to gain more fundamental understanding of the wetting stage during twin-screw granulation as well as to define suitable formulation and process ranges for further granulation process development.


Subject(s)
Technology, Pharmaceutical , Wettability , Cellulose/chemistry , Excipients/chemistry , Lactose/chemistry , Pharmaceutical Preparations/chemistry , Temperature
6.
Eur J Pharm Sci ; 115: 223-232, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29374528

ABSTRACT

Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator, dryer and mill.


Subject(s)
Tablets/chemistry , Drug Compounding/methods , Kinetics , Particle Size , Temperature
7.
Water Sci Technol ; 74(7): 1561-1576, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27763336

ABSTRACT

At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.


Subject(s)
Conservation of Energy Resources , Models, Theoretical , Waste Disposal, Fluid , Wastewater/chemistry , Diffusion , Sewage/chemistry , Spain , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
8.
Water Sci Technol ; 74(3): 549-63, 2016.
Article in English | MEDLINE | ID: mdl-27508360

ABSTRACT

Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.


Subject(s)
Hydrodynamics , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods , Bacteria/metabolism , Models, Theoretical , Sewage/chemistry , Sewage/microbiology , Wastewater/microbiology , Water Purification/instrumentation
9.
Water Sci Technol ; 74(1): 203-11, 2016.
Article in English | MEDLINE | ID: mdl-27386998

ABSTRACT

At wastewater treatment plants (WWTPs), the aerobic conversion processes in the bioreactor are driven by the presence of dissolved oxygen (DO). Within these conversion processes, the oxygen transfer is a rate limiting step as well as being the largest energy consumer. Despite this high importance, WWTP models often lack detail on the aeration part. An extensive measurement campaign with off-gas tests was performed at the WWTP of Eindhoven to provide more information on the performance and behaviour of the aeration system. A high spatial and temporal variability in the oxygen transfer efficiency was observed. Applying this gathered system knowledge in the aeration model resulted in an improved prediction of the DO concentrations. Moreover, an important consequence of this was that ammonium predictions could be improved by resetting the ammonium half-saturation index for autotrophs to its default value. This again proves the importance of balancing sub-models with respect to the need for model calibration as well as model predictive power.


Subject(s)
Oxygen/chemistry , Wastewater/chemistry , Water Purification/instrumentation , Ammonium Compounds/chemistry , Bioreactors , Models, Theoretical
10.
Water Sci Technol ; 73(9): 2150-8, 2016.
Article in English | MEDLINE | ID: mdl-27148716

ABSTRACT

Energy autarky of sewage treatment plants, while reaching chemical oxygen demand (COD) and N discharge limits, can be achieved by means of shortcut N-removal. This study presents the results of a shortcut N-removal pilot, located at the biological two-'stage (high/low rate) wastewater treatment plant of Breda, The Netherlands. The pilot treated real effluent of a high-rate activated sludge (COD/N = 3), fed in a continuous mode at realistic loading rates (90-100 g N/(m(3)·d)). The operational strategy, which included increased stress on the sludge settling velocity, showed development of a semi-granular sludge, with average particle size of 280 µm (ø(4,3)), resulting in increased suppression of nitrite-oxidizing bacteria. The process was able to remove part of the nitrogen (51 ± 23%) over nitrite, with COD/N removal ratios of 3.2 ± 0.9. The latter are lower than the current operation of the full-scale B-stage in Breda (6.8-9.4), showing promising results for carbon-efficient N-removal, while producing a well settling sludge (SVI(30) < 100 mL/g).


Subject(s)
Bioreactors , Nitrogen/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Bacteria/growth & development , Biological Oxygen Demand Analysis , Carbon , Denitrification , Netherlands , Nitrites , Sewage , Wastewater
11.
Water Sci Technol ; 71(10): 1524-35, 2015.
Article in English | MEDLINE | ID: mdl-26442495

ABSTRACT

An improved one-dimensional (1-D) model for the secondary clarifier, i.e. the Bürger-Diehl model, was recently presented. The decisive difference to traditional layer models is that every detail of the implementation is in accordance with the theory of partial differential equations. The Bürger-Diehl model allows accounting for hindered and compressive settling as well as inlet dispersion. In this contribution, the impact of specific features of the Bürger-Diehl model on settler underflow concentration predictions, plant sludge inventory and mixed liquor suspended solids based control actions are investigated by using the benchmark simulation model no. 1. The numerical results show that the Bürger-Diehl model allows for more realistic predictions of the underflow sludge concentration, which is essential for more accurate wet weather modelling and sludge waste predictions. The choice of secondary settler model clearly has a profound impact on the operation and control of the entire treatment plant and it is recommended to use the Bürger-Diehl model as of now in any wastewater treatment plant modelling effort.


Subject(s)
Sewage/analysis , Waste Disposal, Fluid/methods , Benchmarking , Models, Theoretical , Wastewater/chemistry , Weather
12.
Water Sci Technol ; 71(5): 700-8, 2015.
Article in English | MEDLINE | ID: mdl-25768216

ABSTRACT

Complete mixing is hard to achieve in large bioreactors in wastewater treatment plants. This often leads to a non-uniform distribution of components such as dissolved oxygen and, hence, the process rates depend on them. Furthermore, when these components are used as input for a controller, the location of the sensor can potentially affect the control action. In this contribution, the effect of sensor location and the choice of setpoint on the controller performance were examined for a non-homogeneously mixed pilot bioreactor described by a compartmental model. The impacts on effluent quality and aeration cost were evaluated. It was shown that a dissolved oxygen controller with a fixed setpoint performs differently as a function of the location of the sensor. When placed in a poorly mixed location, the controller increases the aeration intensity to its maximum capacity leading to higher aeration costs. When placed just above the aerated zone, the controller decreases the aeration rate resulting in lower dissolved oxygen concentrations in the remainder of the system, compromising effluent quality. In addition to the location of the sensor, the selection of an appropriate setpoint also impacts controller behavior. This suggests that mixing behavior of bioreactors should be better quantified for proper sensor location and controller design.


Subject(s)
Bioreactors , Models, Theoretical , Oxygen/analysis , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation , Wastewater
13.
Water Res ; 76: 99-109, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25794465

ABSTRACT

While most membrane bioreactor (MBR) research focuses on improving membrane filtration through air scour, backwashing and chemical cleaning to physically counteract fouling, relatively few studies have dealt with fouling prevention, e.g. minimizing the impact of operational settings that negatively impact sludge filterability. To evaluate the importance of those settings, the effects of bioreactor aeration intensity variations on membrane fouling have been studied in a lab-scale MBR setup while simultaneously monitoring a unique set of key sludge parameters. In particular, this paper focuses on the impact of shear dynamics resulting from fine air bubbles on the activated sludge quality and flocculation state, impacting membrane fouling. When augmenting the fine bubble aeration intensity both the total and irreversible fouling rate increased. Major indications for sludge filterability deterioration were found to be a shift in the particle size distribution (PSD) in the 3-300 µm range towards smaller sludge flocs, and increasing concentrations of submicron particles (10-1000 nm), soluble microbial products and biopolymers. When lowering the aeration intensity, both the sludge characteristics and fouling either went back to background values or stabilized, respectively indicating a temporary or more permanent effect, with or without time delay. The shift in PSD to smaller flocs and fragments likely increased the total fouling through the formation of a less permeable cake layer, while high concentrations of submicron particles were likely causing increased irreversible fouling through pore blocking. The insights from the performed fouling experiments can be used to optimize system operation with respect to influent dynamics.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Filtration , Flocculation , Particle Size , Sewage/analysis , Waste Disposal, Fluid/methods
14.
Water Sci Technol ; 70(10): 1575-84, 2014.
Article in English | MEDLINE | ID: mdl-25429444

ABSTRACT

To date, computational fluid dynamics (CFD) models have been primarily used for evaluation of hydraulic problems at wastewater treatment plants (WWTPs). A potentially more powerful use, however, is to simulate integrated physical, chemical and/or biological processes involved in WWTP unit processes on a spatial scale and to use the gathered knowledge to accelerate improvement in plant models for everyday use, that is, design and optimized operation. Evolving improvements in computer speed and memory and improved software for implementing CFD, as well as for integrated processes, has allowed for broader usage of this tool for understanding, troubleshooting, and optimal design of WWTP unit processes. This paper proposes a protocol for an alternative use of CFD in process modelling, as a way to gain insight into complex systems leading to improved modelling approaches used in combination with the IWA activated sludge models and other kinetic models.


Subject(s)
Models, Theoretical , Sewage/analysis , Waste Disposal, Fluid/methods , Hydrodynamics , Kinetics , Software
15.
Water Res ; 63: 112-24, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24999116

ABSTRACT

Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.


Subject(s)
Bioreactors , Charcoal/chemistry , Filtration , Sewage/analysis , Sodium Chloride/analysis , Waste Disposal, Fluid , Particle Size , Wastewater/analysis
16.
Water Sci Technol ; 68(1): 1-15, 2013.
Article in English | MEDLINE | ID: mdl-23823534

ABSTRACT

As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.


Subject(s)
Benchmarking , Models, Theoretical , Waste Disposal, Fluid
17.
Water Sci Technol ; 68(2): 296-302, 2013.
Article in English | MEDLINE | ID: mdl-23863420

ABSTRACT

This paper summarizes part of the research work carried out in the Add Control project, which proposes an extension of the wastewater treatment plant (WWTP) models and modelling architectures used in traditional WWTP simulation tools, addressing, in addition to the classical mass transformations (transport, physico-chemical phenomena, biological reactions), all the instrumentation, actuation and automation & control components (sensors, actuators, controllers), considering their real behaviour (signal delays, noise, failures and power consumption of actuators). Its ultimate objective is to allow a rapid transition from the simulation of the control strategy to its implementation at full-scale plants. Thus, this paper presents the application of the Add Control simulation platform for the design and implementation of new control strategies at the WWTP of Mekolalde.


Subject(s)
Models, Theoretical , Waste Disposal, Fluid/methods , Computer Simulation , Europe , International Cooperation , Nitrogen/analysis , Water Pollutants, Chemical/analysis
18.
Water Res ; 47(7): 2387-98, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23466219

ABSTRACT

This study experimentally examined the impact of oxidation on the properties of effluent organic matter (EfOM) using two different oxidation techniques: ozonation and UV/H2O2 treatment. Multiple surrogates for EfOM related to its spectral properties, molecular size, concentration, polarity and biodegradability were used to study the oxidant induced conversions. Spectral calculations as differential absorbance spectra (DAS) and absorbance slope index (ASI) were applied for the first time to describe EfOM oxidation and proved to be useful to unravel differences in working mechanism between ozone and hydroxyl radical (HO) induced transformation of EfOM. Effluent ozonation inherently led to significant HO production as a result of electron transfers between ozone and electron rich moieties of EfOM. HO production increased as function of ozone dose and was strongly correlated to UV absorption at 254 nm (UV254). During the UV moderated process, pseudo steady-state behaviour of the HO concentration was observed. Ozone decomposition was extremely sensitive to EfOM reactivity. Most likely, the degree of dissociation of EfOM controlled its reactivity towards ozone. The pH effect was quantified by calculating the pseudo-first order decay constant for ozone as function of reaction time and pH. Treatment with both processes led to more oxygen rich, less hydrophobic and more biodegradable EfOM.


Subject(s)
Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Organic Chemicals/chemistry , Ozone/chemistry , Ultraviolet Rays , Waste Disposal, Fluid , Belgium , Chlorobenzoates/chemistry , Chromatography, Gel , Kinetics , Molecular Weight , Oxidation-Reduction/radiation effects , Oxygen/chemistry , Spectrophotometry, Ultraviolet , Water Quality
19.
Water Res ; 47(2): 463-82, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23219387

ABSTRACT

Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtration). It therefore is an important property related to process performance, including process economics. To account for this, rheological behaviour is being included in process design, necessitating its measurement. However, measurements and corresponding protocols in literature are quite diverse, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have frequently been used to build viscosity models. However, this is not that straightforward and a lot of errors can be detected with respect to good modelling practice, including fair model selection criteria, qualitative parameter estimations and proper model validation. These important steps are however recurrently violated, severely affecting the model reliability and predictive power. This is illustrated with several examples. In conclusion, dedicated research is required to improve the rheological measurements and the models derived from them. At this moment, there is no guidance with respect to proper rheological measurements. Moreover, the rheological models are not very trustworthy and remain very "black box". More insight in the physical background needs to be gained. A model-based approach with dedicated experimental data collection is the key to address this.


Subject(s)
Models, Biological , Rheology/methods , Sewage/chemistry , Bioreactors/microbiology , Bioreactors/parasitology , Reproducibility of Results , Rheology/instrumentation , Rheology/trends , Sewage/microbiology , Sewage/parasitology , Viscosity , Waste Management/methods
20.
Water Sci Technol ; 66(11): 2483-95, 2012.
Article in English | MEDLINE | ID: mdl-23032782

ABSTRACT

A benchmark simulation model, which includes a wastewater treatment plant (WWTP)-wide model and a rising main sewer model, is proposed for testing mitigation strategies to reduce the system's greenhouse gas (GHG) emissions. The sewer model was run to predict methane emissions, and its output was used as the WWTP model input. An activated sludge model for GHG (ASMG) was used to describe nitrous oxide (N(2)O) generation and release in activated sludge process. N(2)O production through both heterotrophic and autotrophic pathways was included. Other GHG emissions were estimated using empirical relationships. Different scenarios were evaluated comparing GHG emissions, effluent quality and energy consumption. Aeration control played a clear role in N(2)O emissions, through concentrations and distributions of dissolved oxygen (DO) along the length of the bioreactor. The average value of N(2)O emission under dynamic influent cannot be simulated by a steady-state model subjected to a similar influent quality, stressing the importance of dynamic simulation and control. As the GHG models have yet to be validated, these results carry a degree of uncertainty; however, they fulfilled the objective of this study, i.e. to demonstrate the potential of a dynamic system-wide modelling and benchmarking approach for balancing water quality, operational costs and GHG emissions.


Subject(s)
Carbon Footprint , Methane , Models, Theoretical , Nitrous Oxide , Waste Management/standards , Benchmarking , Biological Oxygen Demand Analysis , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...