Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8397, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110433

ABSTRACT

The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.


Subject(s)
Gene Products, tat , HIV-1 , Nanoparticles , RNA, Viral , Virus Latency , Virus Latency/drug effects , Virus Latency/genetics , Gene Products, tat/genetics , Gene Products, tat/metabolism , RNA, Viral/administration & dosage , RNA, Viral/genetics , RNA, Viral/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/virology , Panobinostat/pharmacology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , CD4 Antigens/genetics , CD4 Antigens/metabolism , HIV-1/drug effects , HIV-1/genetics , Proviruses/drug effects , Proviruses/genetics , Single-Cell Gene Expression Analysis , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , RNA, Long Noncoding/metabolism , Cells, Cultured , Humans , Ionomycin/pharmacology
2.
Nucleic Acids Res ; 51(20): e102, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37819007

ABSTRACT

A deep understanding of the composition of the HIV-1 reservoir is necessary for the development of targeted therapies and the evaluation of curative efforts. However, current near full-length (NFL) HIV-1 proviral genome sequencing assays are based on labor-intensive and costly principles of repeated PCRs at limiting dilution, restricting their scalability. To address this, we developed a high-throughput, long-read sequencing assay called HIV-PULSE (HIV Proviral UMI-mediated Long-read Sequencing). This assay uses unique molecular identifiers (UMIs) to tag individual HIV-1 genomes, allowing for the omission of the limiting dilution step and enabling long-range PCR amplification of many NFL genomes in a single PCR reaction, while simultaneously overcoming poor single-read accuracy. We optimized the assay using HIV-infected cell lines and then applied it to blood samples from 18 individuals living with HIV on antiretroviral therapy, yielding a total of 1308 distinct HIV-1 genomes. Benchmarking against the widely applied Full-Length Individual Proviral Sequencing assay revealed similar sensitivity (11 vs 18%) and overall good concordance, although at a significantly higher throughput. In conclusion, HIV-PULSE is a cost-efficient and scalable assay that allows for the characterization of the HIV-1 proviral landscape, making it an attractive method to study the HIV-1 reservoir composition and dynamics.


Subject(s)
Genome, Viral , HIV-1 , Proviruses , Humans , HIV Infections/virology , HIV-1/genetics , Polymerase Chain Reaction , Proviruses/genetics
3.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711686

ABSTRACT

A deep understanding of the composition of the HIV-1 reservoir is necessary for the development of targeted therapies and the evaluation of curative efforts. However, current near full-length (NFL) HIV-1 proviral genome sequencing assays are based on labor-intensive and costly principles of repeated PCRs at limiting dilution, restricting their scalability. To address this, we developed a high-throughput, long-read sequencing assay called HIV-PULSE (HIV P roviral U MI-mediated L ong-read Se quencing). This assay uses unique molecular identifiers (UMIs) to tag individual HIV-1 genomes, allowing for the omission of the limiting dilution step and enabling long-range PCR amplification of many NFL genomes in a single PCR reaction, while simultaneously overcoming poor single-read accuracy. We optimized the assay using HIV-infected cell lines and then applied it to blood samples from 18 individuals living with HIV on antiretroviral therapy, yielding a total of 1,308 distinct HIV-1 genomes. Benchmarking against the widely applied Full-Length Individual Proviral Sequencing assay revealed similar sensitivity (11% vs 18%) and overall good concordance, though at a significantly higher throughput. In conclusion, HIV-PULSE is a cost-efficient and scalable assay that allows for the characterization of the HIV-1 proviral landscape, making it an attractive method to study the HIV-1 reservoir composition and dynamics.

4.
Cell Rep ; 39(4): 110739, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476994

ABSTRACT

The HIV-1 reservoir is composed of cells harboring latent proviruses that have the potential to contribute to viremia upon antiretroviral treatment (ART) interruption. While this reservoir is known to be maintained by clonal expansion of infected cells, the contribution of these cell clones to residual viremia and viral rebound remains underexplored. Here, we conducted an extensive analysis on four ART-treated individuals who underwent an analytical treatment interruption (ATI), characterizing the proviral genomes and associated integration sites of large infected clones and phylogenetically linking these to plasma viremia. We show discrepancies between different assays in their ability to assess clonal expansion. Furthermore, we demonstrate that proviruses could phylogenetically be linked to plasma virus obtained before or during an ATI. This study highlights a role for HIV-infected cell clones in the maintenance of the replication-competent reservoir and suggests that infected cell clones can directly contribute to rebound viremia upon ATI.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Seropositivity/drug therapy , Humans , Proviruses/genetics , Viremia/drug therapy , Virus Latency
5.
Nat Commun ; 12(1): 3727, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140517

ABSTRACT

Clonal expansion of HIV-infected cells contributes to the long-term persistence of the HIV reservoir in ART-suppressed individuals. However, the contribution from cell clones that harbor inducible proviruses to plasma viremia is poorly understood. Here, we describe a single-cell approach to simultaneously sequence the TCR, integration sites and proviral genomes from translation-competent reservoir cells, called STIP-Seq. By applying this approach to blood samples from eight participants, we show that the translation-competent reservoir mainly consists of proviruses with short deletions at the 5'-end of the genome, often involving the major splice donor site. TCR and integration site sequencing reveal that cell clones with predicted pathogen-specificity can harbor inducible proviruses integrated into cancer-related genes. Furthermore, we find several matches between proviruses retrieved with STIP-Seq and plasma viruses obtained during ART and upon treatment interruption, suggesting that STIP-Seq can capture clones that are responsible for low-level viremia or viral rebound.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/blood , HIV Infections/drug therapy , HIV-1/metabolism , Proviruses/genetics , Single-Cell Analysis/methods , Viremia/virology , CD4-Positive T-Lymphocytes/virology , DNA, Viral/blood , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Ionomycin/pharmacology , Male , Middle Aged , Phylogeny , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Sequence Deletion , Viral Load/genetics
6.
J Antimicrob Chemother ; 75(5): 1311-1320, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32053203

ABSTRACT

BACKGROUND: Validated biomarkers to evaluate HIV-1 cure strategies are currently lacking, therefore requiring analytical treatment interruption (ATI) in study participants. Little is known about the safety of ATI and its long-term impact on patient health. OBJECTIVES: ATI safety was assessed and potential biomarkers predicting viral rebound were evaluated. METHODS: PBMCs, plasma and CSF were collected from 11 HIV-1-positive individuals at four different timepoints during ATI (NCT02641756). Total and integrated HIV-1 DNA, cell-associated (CA) HIV-1 RNA transcripts and restriction factor (RF) expression were measured by PCR-based assays. Markers of neuroinflammation and neuronal injury [neurofilament light chain (NFL) and YKL-40 protein] were measured in CSF. Additionally, neopterin, tryptophan and kynurenine were measured, both in plasma and CSF, as markers of immune activation. RESULTS: Total HIV-1 DNA, integrated HIV-1 DNA and CA viral RNA transcripts did not differ pre- and post-ATI. Similarly, no significant NFL or YKL-40 increases in CSF were observed between baseline and viral rebound. Furthermore, markers of immune activation did not increase during ATI. Interestingly, the RFs SLFN11 and APOBEC3G increased after ATI before viral rebound. Similarly, Tat-Rev transcripts were increased preceding viral rebound after interruption. CONCLUSIONS: ATI did not increase viral reservoir size and it did not reveal signs of increased neuronal injury or inflammation, suggesting that these well-monitored ATIs are safe. Elevation of Tat-Rev transcription and induced expression of the RFs SLFN11 and APOBEC3G after ATI, prior to viral rebound, indicates that these factors could be used as potential biomarkers predicting viral rebound.


Subject(s)
HIV Infections , HIV-1 , APOBEC-3G Deaminase , Biomarkers , HIV Infections/drug therapy , HIV-1/genetics , Humans , Nuclear Proteins , RNA, Viral , Viral Load
7.
Vet Res ; 45: 17, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24517254

ABSTRACT

Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.


Subject(s)
Actins/metabolism , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/metabolism , Microtubules/metabolism , Myosins/metabolism , Virus Internalization , Actins/genetics , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cats , Caveolae/physiology , Caveolae/virology , Clathrin/physiology , Feline Infectious Peritonitis/virology , Gene Expression Regulation , Microtubules/genetics , Monocytes/virology , Myosins/genetics
8.
Vaccine ; 29(29-30): 4794-804, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21554913

ABSTRACT

The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Cells, Cultured , Macrophages/virology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...