Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Trop Biomed ; 38(1): 36-41, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33797522

ABSTRACT

Chikungunya virus (CHIKV) infection is the cause of acute symptoms and chronic symmetrical polyarthritis associated with long-term morbidity and mortality. Currently, there is no available licensed vaccine or particularly useful drug for human use against CHIKV infection. This study was conducted to evaluate the efficacy of antibodies produced by papaya mosaic virus (PapMV) nanoparticles fused to E2EP3 peptide of CHIKV envelope as a recombinant CHIKV vaccine. PapMV, PapMV-C- E2EP3, and E2EP3-N-PapMV were produced in E. coli with an approximate size of 27 to 30 kDa. ICR mice (5 to 6 weeks of age) were injected subcutaneously with 25 micrograms of vaccine construct, and ELISA measured the titer of CHIKV specific IgG antibodies. The results showed that both recombinant proteins E2EP3-N-PapMV and PapMVC-E2EP3 were able to induce IgG antibodies production in immunized mice against CHIKV while immunization with recombinant PapMV showed no IgG antibodies induction. The neutralizing activity of the antibodies generated by either E2EP3-N-PapMV or PapMV-C-E2EP3 exhibited similar inhibition to CHIKV replication in Vero cells using the cells based antibody neutralizing assay and analyzed by plaque formation assay. This study showed the effectiveness of nanoparticles vaccine generated by fusing epitope peptide of CHIKV envelope to papaya mosaic virus envelope in inducing a robust immune response in mice against CHIKV. The data showed that levels of neutralizing antibodies correlate with a protective immune response CHIKV replication.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Epitopes/immunology , Mice, Inbred ICR , Nanoparticles , Peptides , Potexvirus
2.
Tropical Biomedicine ; : 36-41, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-882185

ABSTRACT

@#Chikungunya virus (CHIKV) infection is the cause of acute symptoms and chronic symmetrical polyarthritis associated with long-term morbidity and mortality. Currently, there is no available licensed vaccine or particularly useful drug for human use against CHIKV infection. This study was conducted to evaluate the efficacy of antibodies produced by papaya mosaic virus (PapMV) nanoparticles fused to E2EP3 peptide of CHIKV envelope as a recombinant CHIKV vaccine. PapMV, PapMV-C- E2EP3, and E2EP3-N-PapMV were produced in E. coli with an approximate size of 27 to 30 kDa. ICR mice (5 to 6 weeks of age) were injected subcutaneously with 25 micrograms of vaccine construct, and ELISA measured the titer of CHIKV specific IgG antibodies. The results showed that both recombinant proteins E2EP3-N-PapMV and PapMVC-E2EP3 were able to induce IgG antibodies production in immunized mice against CHIKV while immunization with recombinant PapMV showed no IgG antibodies induction. The neutralizing activity of the antibodies generated by either E2EP3-N-PapMV or PapMV-C-E2EP3 exhibited similar inhibition to CHIKV replication in Vero cells using the cells based antibody neutralizing assay and analyzed by plaque formation assay. This study showed the effectiveness of nanoparticles vaccine generated by fusing epitope peptide of CHIKV envelope to papaya mosaic virus envelope in inducing a robust immune response in mice against CHIKV. The data showed that levels of neutralizing antibodies correlate with a protective immune response CHIKV replication

3.
Trop Biomed ; 37(3): 713-721, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33612784

ABSTRACT

Japanese encephalitis virus (JEV), a member of the family Flaviviridae, causes severe neurological disorders in humans. JEV infections represent one of the most widely spread mosquito-borne diseases, and therefore, it has been considered as an endemic disease. An effective antiviral drug is still unavailable to treat JEV, and current drugs only provide supportive treatment to alleviate the symptoms and stabilize patients' conditions. This study was designed to evaluate the antiviral activity of the sulphated polysaccharides "Carrageenan," a linear sulphated polysaccharide that is extracted from red edible seaweeds against JEV replication in vitro. Viral inactivation, attachment, and post-infection assays were used to determine the mode of inhibition of Carrageenan. Virus titters after each application were evaluated by plaque formation assay. MTT assay was used to determine the 50% cytotoxic concentration (CC50), and ELISA-like cell-based assay and immunostaining and immunostaining techniques were used to evaluate the 50% effective concentration (EC50). This study showed that Carrageenan inhibited JEV at an EC50 of 15 µg/mL in a dose-dependent manner with CC50 more than 200 µg/mL in healthy human liver cells (WRL68). The mode of inhibition assay showed that the antiviral effects of Carrageenan are mainly due to their ability to inhibit the early stages of virus infection such as the viral attachment and the cellular entry stages. Our investigation showed that Carrageenan could be considered as a potent antiviral agent to JEV infection. Further experimental and clinical studies are needed to investigate the potential applications of Carrageenan for clinical intervention against JEV infection.


Subject(s)
Antiviral Agents/pharmacology , Carrageenan/pharmacology , Encephalitis Virus, Japanese/drug effects , Cell Line , Encephalitis Virus, Japanese/physiology , Humans , Rhodophyta/chemistry , Virus Attachment/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
4.
Tropical Biomedicine ; : 713-721, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-825593

ABSTRACT

@#Japanese encephalitis virus (JEV), a member of the family Flaviviridae, causes severe neurological disorders in humans. JEV infections represent one of the most widely spread mosquito-borne diseases, and therefore, it has been considered as an endemic disease. An effective antiviral drug is still unavailable to treat JEV, and current drugs only provide supportive treatment to alleviate the symptoms and stabilize patients’ conditions. This study was designed to evaluate the antiviral activity of the sulphated polysaccharides “Carrageenan,” a linear sulphated polysaccharide that is extracted from red edible seaweeds against JEV replication in vitro. Viral inactivation, attachment, and post-infection assays were used to determine the mode of inhibition of Carrageenan. Virus titters after each application were evaluated by plaque formation assay. MTT assay was used to determine the 50% cytotoxic concentration (CC50), and ELISA-like cell-based assay and immunostaining and immunostaining techniques were used to evaluate the 50% effective concentration (EC50). This study showed that Carrageenan inhibited JEV at an EC50 of 15 µg/mL in a dose-dependent manner with CC50 more than 200 µg/mL in healthy human liver cells (WRL68). The mode of inhibition assay showed that the antiviral effects of Carrageenan are mainly due to their ability to inhibit the early stages of virus infection such as the viral attachment and the cellular entry stages. Our investigation showed that Carrageenan could be considered as a potent antiviral agent to JEV infection. Further experimental and clinical studies are needed to investigate the potential applications of Carrageenan for clinical intervention against JEV infection.

5.
Lett Appl Microbiol ; 69(5): 366-372, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31508837

ABSTRACT

We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P < 0·05) compared to the negative controls, G3 and G4, but no significant differences from the positive control G5. Groups G1, G2 and G5 showed more formation of BALT compared to the negative controls, G3 and G4. Our results show that intranasal inoculation of recombinant DNA vaccine ABA392 can provoke mucosal immunity which makes it a potential prophylactic against HS. SIGNIFICANCE AND IMPACT OF THE STUDY: New approach of combating haemorrhagic septicaemia disease among bovines by recombinant DNA vaccine is crucial to overcome the loss of edible products from the infected bovines. DNA vaccine can potentially serve as a better immunogen which would elicit both cellular and humoral immunity, and it is also stable for its molecular reproduction. This research report demonstrates an effective yet simple way of administering the DNA vaccine via the intranasal route in rats, to provoke the mucosal immunity through the development of immunoglobulins IgA, IgG and bronchus-associated lymphoid tissue which guard as the first-line defence at the host's mucosal lining.


Subject(s)
Bacterial Vaccines/administration & dosage , Cattle Diseases/prevention & control , Hemorrhagic Septicemia/veterinary , Pasteurella multocida/immunology , Vaccines, DNA/administration & dosage , Administration, Intranasal , Animals , Antibodies, Bacterial/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , DNA, Recombinant/immunology , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Septicemia/immunology , Hemorrhagic Septicemia/microbiology , Hemorrhagic Septicemia/prevention & control , Immunization, Passive , Male , Pasteurella multocida/genetics , Rats , Rats, Sprague-Dawley , Vaccines, DNA/genetics , Vaccines, DNA/immunology
6.
Acta Virol ; 57(4): 447-51, 2013.
Article in English | MEDLINE | ID: mdl-24294959

ABSTRACT

It has been shown that the E7 protein of the high-risk HPV-16 transforms cells in vitro and binds pRB, p107 and p130, so called pocket proteins associated in cells with DREAM proteins, while that of the low-risk HPV-6 does not transform cells and binds p130 but not pRB or p107. These facts may indicate that p130 is essential for the HPV life cycle. To gain further insight into the relationship between HPV E7 proteins and pocket protein-DREAM complexes, E7 proteins of HPVs of various risk categories were expressed via appropriate vectors in T98G cells and the levels of various pocket proteins either total or associated with DREAM were analyzed. The obtained results demonstrated that high-risk HPV-16, HPV-18 and HPV-33, low-risk HPV-1 and HPV-11, and cutaneous HPV-48 disrupted pocket protein-DREAM complexes in T98G cells to a similar extent.


Subject(s)
Alphapapillomavirus/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Tumor Suppressor Proteins/metabolism , Alphapapillomavirus/classification , Alphapapillomavirus/genetics , Humans , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Protein Binding , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...