Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Methods Cell Biol ; 181: 17-32, 2024.
Article in English | MEDLINE | ID: mdl-38302238

ABSTRACT

Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Zebrafish , Animals , Humans , Zebrafish/genetics , Morpholinos/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Dopamine , Microinjections
2.
Life (Basel) ; 13(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676165

ABSTRACT

In this narrative review, we present the evidence on nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome activation for its putative roles in the elusive pathomechanism of aging-related cerebral small vessel disease (CSVD). Although NLRP3 inflammasome-interleukin (IL)-1ß has been implicated in the pathophysiology of coronary artery disease, its roles in cerebral arteriothrombotic micro-circulation disease such as CSVD remains unexplored. Here, we elaborate on the current manifestations of CSVD and its' complex pathogenesis and relate the array of activators and aberrant activation involving NLRP3 inflammasome with this condition. These neuroinflammatory insights would expand on our current understanding of CSVD clinical (and subclinical) heterogenous manifestations whilst highlighting plausible NLRP3-linked therapeutic targets.

3.
Front Pharmacol ; 13: 1076143, 2022.
Article in English | MEDLINE | ID: mdl-36545318

ABSTRACT

Channa striatus (CS), or snakehead murrel, is an obligate air-breathing freshwater fish. Besides its wound healing properties, CS has also been reported to exhibit anti-inflammatory effects in multiple studies. While there are anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), their long-term use is associated with an increased risk of peptic ulcers, acute renal failure, stroke, and myocardial infarction. Thus, it is essential to look at natural methods such as CS extract. While there is an abundant number of investigative studies on the inflammatory properties of CS, the quality of these studies has not been evaluated effectively. Thus, this review aims to summarise, evaluate, and critically appraise currently available literature regarding the anti-inflammatory properties of CS extract. This is done by performing a search using four databases, namely Google Scholar, Embase via Elsevier, Scopus, and Web of Science, with the following terms: Channa striatus AND inflammation. From our review, CS has been experimentally shown to positively affect inflammatory conditions such as gastric ulcers, dermatitis, osteoarthritis, and allergic rhinitis. Beneficial effects were also found on inflammation in the presence of tuberculosis and in situations that involve inflammation, such as wound healing. While CS clearly has potential for treating inflammatory conditions, much work needs to be done on identifying and isolating the active constituents before exact mechanisms of action can be worked out to develop future anti-inflammatory medications.

4.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955446

ABSTRACT

Background: Type 2 diabetes mellitus has recently been identified as a mediator of neurodegeneration. However, the molecular mechanisms have not been clearly elucidated. We aimed to investigate insulin resistance associated with neurodegenerative events in zebrafish larvae. Methods: Larvae aged 72 h-post-fertilization (hpf) were induced to insulin resistance by immersion in 250 nM insulin and were then reinduced with 100 nM insulin at 96 hpf. This model was validated by a glucose levels assay, qPCR analysis of selected genes (akt, pepck, zglut3 and claudin-5a) and Oil Red-O (ORO) staining of the yolk sac for lipid distribution. The association of insulin resistance and neurodegeneration was validated by malondialdehyde (MDA), glutathione (GSH) assays, and by integrating next-generation sequencing with database for annotation, visualization and integrated discovery (DAVID). Results: There was a significant increase in glucose levels at 180 min in the insulin-resistant group. However, it decreased at 400 min after the re-challenge. Insulin-signaling mediators, akt and pepck, were showed significantly downregulated up to 400 min after insulin immersion (p < 0.05). Meanwhile, claudin-5a assessed blood−brain barrier (BBB) integrity and showed significant deterioration after 400 min of post-insulin immersion. ORO staining remarked the increase in yolk sac size in the insulin-resistant group. After the confirmation of insulin resistance, MDA levels increased significantly in the insulin-resistant group compared to the control group in the following parameters. Furthermore, dysregulated MAPK- and Wnt/Ca2+-signaling pathways were observed in the insulin-resistant group, disrupting energy metabolism and causing BBB injury. Conclusions: We conclude that the insulin-resistant zebrafish larvae alter the metabolic physiology associated with neurodegeneration.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Claudins/metabolism , Embryo, Nonmammalian/metabolism , Glucose/metabolism , Insulin/metabolism , Larva/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Zebrafish/genetics
5.
Noncoding RNA ; 8(3)2022 May 28.
Article in English | MEDLINE | ID: mdl-35736636

ABSTRACT

In recent years, long non-coding RNAs (lncRNAs) have been shown to play important regulatory roles in cellular processes. Growth arrests specific transcript 5 (GAS5) is a lncRNA that is highly expressed during the cell cycle arrest phase but is downregulated in actively growing cells. Growth arrests specific transcript 5 was discovered to be downregulated in several cancers, primarily solid tumors, and it is known as a tumor suppressor gene that regulates cell proliferation, invasion, migration, and apoptosis via multiple molecular mechanisms. Furthermore, GAS5 polymorphism was found to affect GAS5 expression and functionality in a cell-specific manner. This review article focuses on GAS5's tumor-suppressive effects in regulating oncogenic signaling pathways, cell cycle, apoptosis, tumor-associated genes, and treatment-resistant cells. We also discussed genetic polymorphisms of GAS5 and their association with cancer susceptibility.

6.
Front Pharmacol ; 13: 821618, 2022.
Article in English | MEDLINE | ID: mdl-35444543

ABSTRACT

Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. Mounting evidence suggests the link between epileptogenesis and neuroinflammation. We hypothesize that eliminating neuroinflammation can alleviate seizure severity and prolong seizure onset. Channa striatus (CS) is a snakehead murrel commonly consumed by locals in Malaysia, believed to promote wound healing and mitigate inflammation. This study aims to unravel the anticonvulsive potential of CS extract on neuroinflammation-induced seizures using an adult zebrafish model. Neuroinflammation was induced via cerebroventricular microinjection of lipopolysaccharides from E. coli and later challenged with a second-hit pentylenetetrazol at a subconvulsive dose of 80 mg/kg. Zebrafish behaviour and swimming pattern analysis, as well as gene expression analysis, were done to study the pharmacological property of CS. CS extract pre-treatment in all doses significantly reduced seizure score, prolonged seizure onset time and slightly improved the locomotor swimming pattern of the zebrafish. CS extract pre-treatment at all doses significantly reduced the expression of NFKB gene in the brain, and CS extract at 25 mg/L significantly reduced the IL-1 gene expression suggesting anti-neuroinflammatory properties. However, there were no significant changes in the TNFα. Besides, CS extract at 50 mg/L also elevated the expression of the CREB gene, which exerts neuroprotective effects on the neurons and the NPY gene, which plays a role in modulating the inhibition of the excitatory neurotransmission. To sum up, CS extract demonstrated some anticonvulsive and anti-inflammatory activity on neuroinflammation-induced seizures. Still, more studies need to be done to elucidate the mechanism of action of CS extract.

7.
J Control Release ; 343: 237-254, 2022 03.
Article in English | MEDLINE | ID: mdl-35085695

ABSTRACT

Acute kidney injury (AKI) causes considerable morbidity and mortality, particularly in the case of post-cardiac infarction or kidney transplantation; however, the site-specific accumulation of small molecule reno-protective agents for AKI has often proved ineffective due to dynamic fluid and solute excretion and non-selectivity, which impedes therapeutic efficacy. This article reviews the current status and future trajectories of renal nanomedicine research for AKI management from pharmacological and clinical perspectives, with a particular focus on appraising nanosized drug carrier (NDC) use for the delivery of reno-protective agents of different pharmacological classes and the effectiveness of NDCs in improving renal tissue targeting selectivity and efficacy of said agents. This review reveals the critical shift in the role of the small molecule reno-protective agents in AKI pharmacotherapy - from prophylaxis to treatment - when using NDCs for delivery to the kidney. We also highlight the need to identify the accumulation sites of NDCs carrying reno-protective agents in renal tissues during in vivo assessments and detail the less-explored pharmacological classes of reno-protective agents whose efficacies may be improved via NDC-based delivery. We conclude the paper by outlining the challenges and future perspectives of NDC-based reno-protective agent delivery for better clinical management of AKI.


Subject(s)
Acute Kidney Injury , Nanoparticles , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Drug Carriers/therapeutic use , Drug Delivery Systems/adverse effects , Humans , Kidney , Nanomedicine , Nanoparticles/therapeutic use
8.
Front Pharmacol ; 12: 708055, 2021.
Article in English | MEDLINE | ID: mdl-34603022

ABSTRACT

Kratom is a widely abused plant-based drug preparation with a global interest in recent years, well beyond its native grounds in Southeast Asia. Mitragynine, its major psychoactive constituent is known to exhibit opioid-like behavioral effects with resultant neuroplasticity in the brain reward system. Its chronic administration is associated with cognitive impairments in animal studies. However, the underlying molecular mechanism for such a deficit remains elusive. In this study, the involvement of cannabinoid type-1 (CB1) receptors in cognitive deficits after chronic mitragynine exposures was investigated for 28 days (with incremental dose sensitization from 1 to 25 mg/kg) in adult male Swiss albino mice using the IntelliCage® system. Chronic high-dose mitragynine exposure (5-25 mg/kg, intraperitoneal [i.p.]), but not low-dose exposure (1-4 mg/kg, i.p.), induced hyperlocomotion, potentiated the preference for sucrose reward, increased resistance to punishment, and impaired place learning and its reversal. Comparable deficits were also observed after chronic treatments with Δ-9-tetrahydrocannabinol (THC, 2 mg/kg, i.p.) or morphine (5 mg/kg, subcutaneous). Mitragynine-, morphine-, and THC-induced learning and memory deficits were reversed by co-treatment with the CB1 receptor antagonist, NIDA-41020 (10 mg/kg, i.p.). A significant upregulation of CB1 receptor expression was found in the hippocampal CA1 region and ventral tegmental area after chronic high-dose mitragynine and morphine, whereas a downregulation was observed after chronic THC. In conclusion, the present study suggests a plausible role of the CB1 receptor in mediating the dose-dependent cognitive deficits after chronic high-dose mitragynine exposure. This also highlights the potential of CB1 receptor antagonism in ameliorating the cognitive deficits associated with long-term kratom/mitragynine consumption in humans.

9.
Pharmaceutics ; 13(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34452169

ABSTRACT

The distinctive anatomical assemble and functionally discrete multicellular cerebrovasculature dynamics confer varying rheological and blood-brain barrier permeabilities to preserve the integrity of cerebral white matter and its neural microenvironment. This homeostasis intricately involves the glymphatic system that manages the flow of interstitial solutes, metabolic waste, and clearance through the venous circulation. As a physiologically integrated neurogliovascular unit (NGVU) serving a particularly vulnerable cerebral white matter (from hypoxia, metabolic insults, infection, and inflammation), a likely insidious process over a lifetime could inflict microenvironment damages that may lead to pathological conditions. Two such conditions, cerebral small vessel disease (CSVD) and vascular parkinsonism (VaP), with poorly understood pathomechanisms, are frequently linked to this brain-wide NGVU. VaP is widely regarded as an atypical parkinsonism, described by cardinal motor manifestations and the presence of cerebrovascular disease, particularly white matter hyperintensities (WMHs) in the basal ganglia and subcortical region. WMHs, in turn, are a recognised imaging spectrum of CSVD manifestations, and in relation to disrupted NGVU, also include enlarged perivascular spaces. Here, in this narrative review, we present and discuss on recent findings that argue for plausible clues between CSVD and VaP by focusing on aberrant multicellular dynamics of a unique integrated NGVU-a crossroad of the immune-vascular-nervous system-which may also extend fresher insights into the elusive interplay between cerebral microvasculature and neurodegeneration, and the potential therapeutic targets.

10.
Front Behav Neurosci ; 15: 683780, 2021.
Article in English | MEDLINE | ID: mdl-34149373

ABSTRACT

The use of animal models for substance use disorder (SUD) has made an important contribution in the investigation of the behavioral and molecular mechanisms underlying substance abuse and addiction. Here, we review a novel and comprehensive behavioral platform to characterize addiction-like traits in rodents using a fully automated learning system, the IntelliCage. This system simultaneously captures the basic behavioral navigation, reward preference, and aversion, as well as the multi-dimensional complex behaviors and cognitive functions of group-housed rodents. It can reliably capture and track locomotor and cognitive pattern alterations associated with the development of substance addiction. Thus, the IntelliCage learning system offers a potentially efficient, flexible, and sensitive tool for the high-throughput screening of the rodent SUD model.

11.
J Neurochem ; 156(4): 481-498, 2021 02.
Article in English | MEDLINE | ID: mdl-32583440

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.


Subject(s)
Cell Differentiation/physiology , Diencephalon/embryology , Diencephalon/metabolism , Dopaminergic Neurons/metabolism , Glial Cell Line-Derived Neurotrophic Factor/deficiency , Transcription Factors/deficiency , Zebrafish Proteins/deficiency , Animals , Animals, Genetically Modified , Glial Cell Line-Derived Neurotrophic Factor/genetics , Transcription Factors/genetics , Zebrafish , Zebrafish Proteins/genetics
12.
Brain Sci ; 10(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403347

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) was initially described as important for dopaminergic neuronal survival and is involved in many other essential functions in the central nervous system. Characterization of GDNF phenotype in mammals is well described; however, studies in non-mammalian vertebrate models are scarce. Here, we characterized the anatomical distribution of gdnf-expressing cells in adult zebrafish brain by means of combined in situ hybridization (ISH) and immunohistochemistry. Our results revealed that gdnf was widely dispersed in the brain. gdnf transcripts were co-localized with radial glial cells along the ventricular area of the telencephalon and in the hypothalamus. Interestingly, Sox2 positive cells expressed gdnf in the neuronal layer but not in the ventricular zone of the telencephalon. A subset of GABAergic precursor cells labeled with dlx6a-1.4kbdlx5a/6a: green fluorescence protein (GFP) in the pallium, parvocellular preoptic nucleus, and the anterior and dorsal zones of the periventricular hypothalamus also showed expression with gdnf mRNA. In addition, gdnf signals were detected in subsets of dopaminergic neurons, including those in the ventral diencephalon, similar to what is seen in mammalian brain. Our work extends our knowledge of gdnf action sites and suggests a potential role for gdnf in adult brain neurogenesis and regeneration.

13.
Naunyn Schmiedebergs Arch Pharmacol ; 393(3): 405-417, 2020 03.
Article in English | MEDLINE | ID: mdl-31641820

ABSTRACT

The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 µM and HT-29 = 18.52 µM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.


Subject(s)
Apoptosis/physiology , Colorectal Neoplasms/metabolism , Gallic Acid/analogs & derivatives , Mitochondria/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Suppressor Protein p53 , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Dose-Response Relationship, Drug , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , HCT116 Cells , HT29 Cells , Humans , Mitochondria/drug effects , Mitochondria/genetics , Mutation/drug effects , Mutation/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics
14.
Int J Nanomedicine ; 12: 577-591, 2017.
Article in English | MEDLINE | ID: mdl-28144140

ABSTRACT

BACKGROUND AND PURPOSE: Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. EXPERIMENTAL APPROACH: 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). RESULTS: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. CONCLUSION/IMPLICATIONS: The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Drug Carriers/chemistry , Drug Delivery Systems , Kidney/metabolism , Polyglutamic Acid/chemistry , Animals , Aorta/enzymology , Epithelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Male , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Polyglutamic Acid/blood , Radioactivity , Rats, Sprague-Dawley , Sulfones/chemistry , Tissue Distribution
15.
Mol Cell Neurosci ; 65: 68-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25731829

ABSTRACT

Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25µm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25µm), with a reciprocal linear correlation (m, 90µm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.


Subject(s)
Astrocytes/metabolism , Inclusion Bodies/metabolism , Multiple System Atrophy/metabolism , alpha-Synuclein/metabolism , Aged , Animals , Astrocytes/drug effects , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , alpha-Synuclein/pharmacology
16.
PLoS One ; 9(5): e95908, 2014.
Article in English | MEDLINE | ID: mdl-24800807

ABSTRACT

BACKGROUND: The study was carried out to determine the cytotoxic, antioxidant and gastro-protective effect of ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylid ene)amino] benzoate (ETHAB) in rats. METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of ETHAB was assessed using a MTT cleavage assay on a WRL68 cell line, while its antioxidant activity was evaluated in vitro. In the anti-ulcer study, rats were divided into six groups. Group 1 and group 2 received 10% Tween 20 (vehicle). Group 3 received 20 mg/kg Omeprazole. Groups 4, 5 and 6 received ETHAB at doses of 5, 10, and 20 mg/kg, respectively. After an hour, group 1 received the vehicle. Groups 2-6 received absolute ethanol to induce gastric mucosal lesions. In the WRL68 cell line, an IC50 of more than 100 µg/mL was observed. ETHAB results showed antioxidant activity in the DPPH, FRAP, nitric oxide and metal chelating assays. There was no acute toxicity even at the highest dosage (1000 mg/kg). Microscopy showed that rats pretreated with ETHAB revealed protection of gastric mucosa as ascertained by significant increases in superoxide dismutase (SOD), pH level, mucus secretion, reduced gastric lesions, malondialdehyde (MDA) level and remarkable flattened gastric mucosa. Histologically, pretreatment with ETHAB resulted in comparatively better gastric protection, due to reduction of submucosal edema with leucocyte infiltration. PAS staining showed increased intensity in uptake of Alcian blue. In terms of immunohistochemistry, ETHAB showed down-expression of Bax proteins and over-expression of Hsp70 proteins. CONCLUSION/SIGNIFICANCE: The gastroprotective effect of ETHAB may be attributed to antioxidant activity, increased gastric wall mucus, pH level of gastric contents, SOD activity, decrease in MDA level, ulcer area, flattening of gastric mucosa, reduction of edema and leucocyte infiltration of the submucosal layer, increased PAS staining, up-regulation of Hsp70 protein and suppressed expression of Bax.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Antioxidants/therapeutic use , Gastric Mucosa/drug effects , Phenols/therapeutic use , Stomach Ulcer/drug therapy , para-Aminobenzoates/therapeutic use , Animals , Anti-Ulcer Agents/chemical synthesis , Anti-Ulcer Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Ethanol/toxicity , Female , HeLa Cells , Humans , Male , Phenols/pharmacology , Rats , para-Aminobenzoates/pharmacology
17.
Neurotox Res ; 23(1): 1-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23229893

ABSTRACT

Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70-75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band that was immunopositive for Hsp90 and immunoprecipitated with an anti-SUMO-1 antibody. That SUMO-1 co-localizes with a subset of lysosomes in neurodegenerative diseases with glial protein aggregates and in glial cell culture models of protein aggregation suggests a role for SUMO-1 in lysosome function.


Subject(s)
Lysosomes/metabolism , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism , SUMO-1 Protein/metabolism , Aged , Animals , Cell Line, Tumor , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Lysosomes/pathology , Male , Middle Aged , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Rats , Rats, Sprague-Dawley
18.
Molecules ; 16(9): 7980-93, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21921870

ABSTRACT

Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.


Subject(s)
DNA/biosynthesis , Fluorescent Dyes/chemistry , Thymidine/analogs & derivatives , Thymidine/chemistry , Animals , Bromodeoxyuridine/chemistry , Cell Proliferation , Cells, Cultured , Click Chemistry , DNA/chemistry , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , Humans , Staining and Labeling , Stem Cell Niche
19.
Brain Res ; 1360: 119-29, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20807515

ABSTRACT

Rotenone, a mitochondrial complex 1 inhibitor, causes oxidative damage via production of reactive oxygen species. We examined the pathophysiology of neuronal and glial cells of the nigrostriatal pathway following unilateral infusion of varying doses of rotenone into the substantia nigra or medial forebrain bundle of adult male Sprague-Dawley rats, sacrificed 14 and 60 days after infusion. Immunofluorescence techniques were used to qualitatively and quantitatively assay dopaminergic neurons, their projections, glial cells, synapses, and oxidative stress. Rotenone infusion into the substantia nigra at all concentrations caused extensive damage and tissue necrosis, therefore of limited relevance for producing a Parkinson disease model. Infusion of 0.5µg of rotenone targeting the medial forebrain bundle induced oxidative stress in dopaminergic neurons causing ongoing cell stress as defined by an elevation of stress granule and oxidative stress markers. This treatment resulted in the loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (p≤0.01) and loss of tyrosine hydroxylase immunoreactive nerve fibres and synaptic specialisations in the striatum (p≤0.01). The infusion of 0.5µg of rotenone also caused an increase in astrocytes and microglial cells in the substantia nigra in comparison to control (p≤0.01). We examined the time-dependent reduction of tyrosine hydroxylase-positive nerve fibres and cell bodies in the striatum and substantia nigra respectively, with a progressive reduction evident 60days after infusion (p≤0.01, p≤0.05). Dopaminergic axons exposed to low-dose rotenone undergo oxidative stress, with a resultant ongoing loss of dopaminergic neurons, providing an animal model relevant to Parkinson disease.


Subject(s)
Dopamine/physiology , Medial Forebrain Bundle/physiology , Neurons/drug effects , Rotenone/pharmacology , Uncoupling Agents/pharmacology , Animals , Apoptosis/drug effects , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Caspase 3/metabolism , Cell Count , Densitometry , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Male , Microfilament Proteins , Microglia/metabolism , Neurons/physiology , Oxidative Stress/physiology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Rats , Rats, Sprague-Dawley , Rotenone/administration & dosage , Substantia Nigra/enzymology , Substantia Nigra/pathology , Superoxide Dismutase/metabolism , Synapses/drug effects , Synaptophysin/metabolism , Tyrosine 3-Monooxygenase/metabolism , Uncoupling Agents/administration & dosage , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...