Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cogn Neurosci ; 54: 101093, 2022 04.
Article in English | MEDLINE | ID: mdl-35248820

ABSTRACT

Current approaches to analysing EEG hyperscanning data in the developmental literature typically consider interpersonal entrainment between interacting physiological systems as a time-invariant property. This approach obscures crucial information about how entrainment between interacting systems is established and maintained over time. Here, we describe methods, and present computational algorithms, that will allow researchers to address this gap in the literature. We focus on how two different approaches to measuring entrainment, namely concurrent (e.g., power correlations, phase locking) and sequential (e.g., Granger causality) measures, can be applied to three aspects of the brain signal: amplitude, power, and phase. We guide the reader through worked examples using simulated data on how to leverage these methods to measure changes in interbrain entrainment. For each, we aim to provide a detailed explanation of the interpretation and application of these analyses when studying neural entrainment during early social interactions.


Subject(s)
Brain , Electroencephalography , Adult , Brain/physiology , Brain Mapping/methods , Electroencephalography/methods , Humans , Social Interaction
2.
Dev Cogn Neurosci ; 52: 101024, 2021 12.
Article in English | MEDLINE | ID: mdl-34715619

ABSTRACT

Automated systems for identifying and removing non-neural ICA components are growing in popularity among EEG researchers of adult populations. Infant EEG data differs in many ways from adult EEG data, but there exists almost no specific system for automated classification of source components from paediatric populations. Here, we adapt one of the most popular systems for adult ICA component classification for use with infant EEG data. Our adapted classifier significantly outperformed the original adult classifier on samples of naturalistic free play EEG data recorded from 10 to 12-month-old infants, achieving agreement rates with the manual classification of over 75% across two validation studies (n = 44, n = 25). Additionally, we examined both classifiers' ability to remove stereotyped ocular artifact from a basic visual processing ERP dataset compared to manual ICA data cleaning. Here, the new classifier performed on level with expert manual cleaning and was again significantly better than the adult classifier at removing artifact whilst retaining a greater amount of genuine neural signal operationalised through comparing ERP activations in time and space. Our new system (iMARA) offers developmental EEG researchers a flexible tool for automatic identification and removal of artifactual ICA components.


Subject(s)
Electroencephalography , Signal Processing, Computer-Assisted , Adult , Artifacts , Child , Humans , Infant , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...