Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(10): 11366-11376, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496981

ABSTRACT

2-Dodecyldiethylenetriaminepentaacetic acid (C12-DTPA) is a chelating, amphoteric surfactant with a bulky headgroup containing eight pH-responsive groups. The hypothesis was that the amphoteric nature of the chelating surfactant would affect the interaction with another surfactant and, consequently, also the composition of mixed surface layers. Binary mixed monolayers of C12-DTPA and the anionic surfactant sodium dodecyl sulfate (SDS) were examined using neutron reflection and surface tension measurements. The experiments were conducted at pH 5, where the C12-DTPA monomers carried a net negative charge. Surface excess calculations at low total surfactant concentration revealed that the chelating surfactant dominated the surface composition. However, as the concentration was raised, the surface composition shifted toward an SDS-dominant state. This phenomenon was attributed to the increased ionic strength at increased concentrations, which altered the balance between competing entropic forces in the system. Interaction parameters for mixed monolayer formation were calculated, following a framework based on regular solution theory. In accordance with the hypothesis, the chelating surfactant's ability to modulate its charge and mitigate repulsive interactions in the surface layer resulted in favorable interactions between the anionic SDS and negatively charged C12-DTPA monomers. These interactions were found to be concentration-dependent, which was consistent with the observed shift in the surface layer composition.

2.
Carbohydr Polym ; 326: 121633, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142079

ABSTRACT

Polysaccharides are among the most abundant bioresources on earth and consequently need to play a pivotal role when addressing existential scientific challenges like climate change and the shift from fossil-based to sustainable biobased materials. The Research Roadmap 2040 of the European Polysaccharide Network of Excellence (EPNOE) provides an expert's view on how future research and development strategies need to evolve to fully exploit the vast potential of polysaccharides as renewable bioresources. It is addressed to academic researchers, companies, as well as policymakers and covers five strategic areas that are of great importance in the context of polysaccharide related research: (I) Materials & Engineering, (II) Food & Nutrition, (III) Biomedical Applications, (IV) Chemistry, Biology & Physics, and (V) Skills & Education. Each section summarizes the state of research, identifies challenges that are currently faced, project achievements and developments that are expected in the upcoming 20 years, and finally provides outlines on how future research activities need to evolve.


Subject(s)
Polysaccharides
3.
Int J Biol Macromol ; 248: 125947, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482163

ABSTRACT

Phenolic foams are typically produced from phenolic resins, using phenol and formaldehyde precursors. Therefore, common phenolic foams are non-sustainable, comprising growing environmental, health, and economic concerns. In this work, lignin extracted from pine wood residues using a "green" levulinic acid-based solvent, was used to partially substitute non-sustainable phenol. The novel engineered foams were systematically compared to foams composed of different types of commercially available technical lignins. Different features were analyzed, such as foam density, microstructure (electron microscopy), surface hydrophilicity (contact angle), chemical grafting (infrared spectroscopy) and mechanical and thermal features. Overall, it was observed that up to 30 wt% of phenol can be substituted by the new type of lignin, without compromising the foam properties. This work provides a new insights on the development of novel lignin-based foams as a very promising sustainable and renewable alternative to petrol-based counterparts.


Subject(s)
Lignin , Pinus , Lignin/chemistry , Phenols/chemistry , Phenol/chemistry , Wood/chemistry
4.
Biomacromolecules ; 24(7): 3094-3104, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37288956

ABSTRACT

The high potential use of lignin in novel biomaterials and chemicals represents an important opportunity for the valorization of the most abundant natural resource of aromatic molecules. From an environmental perspective, it is highly desirable replacing the hazardous methods currently used to extract lignin from lignocellulosic biomass and develop more sustainable and environmentally friendly approaches. Therefore, in this work, levulinic acid (a "green" solvent obtained from biomass) was successfully used, for the first time, to selectively extract high-quality lignin from pine wood sawdust residues at 200 °C for 6 h (at atmospheric pressure). Moreover, the addition of catalytic concentrations of inorganic acids (i.e., H2SO4 or HCl) was found to substantially reduce the temperature and reaction times needed (i.e., 140 °C, 2 h) for complete lignin extraction without compromising its purity. NMR data suggests that condensed OH structures and acidic groups are present in the lignin following extraction. Levulinic acid can be easily recycled and efficiently reused several times without affecting its performance. Furthermore, excellent solvent reusability and performance of extraction of other wood residues has been successfully demonstrated, thus making the developed levulinic acid-based procedure highly appealing and promising to replace the traditional less sustainable methodologies.


Subject(s)
Acids , Lignin , Lignin/chemistry , Solvents/chemistry , Levulinic Acids , Biomass
5.
Polymers (Basel) ; 15(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37177351

ABSTRACT

Cellulose acetate butyrate (CAB) is a possible candidate, being a raw material derived from renewable resources, to replace fossil-based materials. This is due to its thermoplastic properties and the relative ease with which it could be implemented within the existing industry. With a significant amount of variation in CAB on the market today, a knowledge gap has been identified regarding the understanding of the polymer structural arrangement in films. This relates to the underlying mechanisms that regulate CAB film material properties, insights that are important in product development. In this study, commercially available CAB was investigated with XRD, SEM, AFM, and TOPEM DSC in order to obtain physicochemical information related to its micro-structural features in solvent-cast films. The film-forming ability relates mostly to the number of hydroxyl groups, and the semi-crystallinity of the films depends on the type and position of the side groups along the cellulose backbone. The appearance of signs of possible cholesteric ordering in the films could be connected to higher amounts of hydroxyl groups along the backbone that disturb the helix arrangement, while the overall order was primarily related to the butyrate substitution and secondarily related to the molecular weight of the particular CAB studied. Cold crystallization was also observed in one CAB sample.

6.
Molecules ; 28(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37241956

ABSTRACT

In the history of cellulose chemistry, hydrogen bonding has been the predominant explanation when discussing intermolecular interactions between cellulose polymers. This is the general consensus in scholarly textbooks and in many research articles, and it applies to several other biomacromolecules' interactions as well. This rather unbalanced description of cellulose has likely impacted the development of materials based on the processing of cellulose-for example, via dissolution in various solvent systems and regeneration into solid materials, such as films and fibers, and even traditional wood fiber handling and papermaking. In this review, we take as a starting point the questioning of the general description of the nature of cellulose and cellulose interactions initiated by Professor Björn Lindman, based on generic physicochemical reasoning about surfactants and polymers. This dispute, which became known as "the Lindman hypothesis", highlights the importance of hydrophobic interactions in cellulose systems and that cellulose is an amphiphilic polymer. This paper elaborates on Björn Lindman's contribution to the subject, which has caused the scientific community to revisit cellulose and reconsider certain phenomena from other perspectives.

7.
Int J Biol Macromol ; 219: 998-1008, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35963351

ABSTRACT

In this work, we aimed to tune cellulose nanocrystals (CNCs) properties by introducing different functional groups (aldehyde, carboxyl, silane, and ammonium groups) on the surface through different chemical modifications. These functional groups were obtained by combining: the periodate oxidation with TEMPO-oxidation, aminosylation or cationization. CNCs produced and their films were characterized to elucidate their performances. The results showed that the properties of obtained CNCs varied depending on the grafted functionalities on the surface. The results reveal that after each modification a colloidal stability is preserved. Interestingly, Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with a tensile strength of 116 MPa compared to the pristine CNCs, in contrast the subsequent modifications led to lower tensile strength. Of note, remarkable thermal stability has been achieved after modifications reaching a maximum of 280 °C. The oxygen barrier properties of the films after modifications varied between 0.48 and 0.54 cm3µm/(m2d*kPa) at 50 % RH.


Subject(s)
Ammonium Compounds , Nanoparticles , Aldehydes , Cellulose/chemistry , Nanoparticles/chemistry , Oxygen , Periodic Acid , Silanes
8.
Carbohydr Polym ; 286: 119257, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35337494

ABSTRACT

With amphiphilic properties, cellulose molecules are expected to adsorb at the O/W interface and be capable of stabilizing emulsions. The effect of solvent quality on the formation and stability of cellulose-based O/W emulsions was evaluated in different alkaline systems: NaOH, NaOH-urea and tetrabutylammonium hydroxide (TBAH). The optimal solvency conditions for cellulose adsorption at the O/W interface were found for the alkaline solvent with an intermediate polarity (NaOH-urea), which is in line with the favorable conditions for adsorption of an amphiphilic polymer. A very good solvency (in TBAH) and the interfacial activity of the cation lead to lack of stability because of low cellulose adsorption. However, to achieve long-term stability and prevent oil separation in NaOH-urea systems, further reduction in cellulose's solvency was needed, which was achieved by a change in the pH of the emulsions, inducing the regeneration of cellulose at the surface of the oil droplets (in-situ regeneration).

9.
Carbohydr Polym ; 274: 118661, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34702480

ABSTRACT

Aqueous sodium hydroxide solutions are extensively used as solvents for lignin in kraft pulping. These are also appealing systems for cellulose dissolution due to their inexpensiveness, ease to recycle and low toxicity. Cellulose dissolution occurs in a narrow concentration region and at low temperatures. Dissolution is often incomplete but additives, such as zinc oxide or urea, have been found to significantly improve cellulose dissolution. In this work, lignin was explored as a possible beneficial additive for cellulose dissolution. Lignin was found to improve cellulose dissolution in cold alkali, extending the NaOH concentration range to lower values. The regenerated cellulose material from the NaOH-lignin solvents was found to have a lower crystallinity and crystallite size than the samples prepared in the neat NaOH and NaOH-urea solvents. Beneficial lignin-cellulose interactions in solution state appear to be preserved under coagulation and regeneration, reducing the tendency of crystallization of cellulose.

10.
Polymers (Basel) ; 13(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669230

ABSTRACT

Polymeric multilayer capsules formed by the Layer-by-Layer (LbL) technique are interesting candidates for the purposes of storage, encapsulation, and release of drugs and biomolecules for pharmaceutical and biomedical applications. In the current study, cellulose-based core-shell particles were developed via the LbL technique alternating two cellulose derivatives, anionic carboxymethylcellulose (CMC), and cationic quaternized hydroxyethylcellulose ethoxylate (QHECE), onto a cationic vesicular template made of didodecyldimethylammonium bromide (DDAB). The obtained capsules were characterized by dynamic light scattering (DLS), ζ potential measurements, and high-resolution scanning electron microscopy (HR-SEM). DLS measurements reveal that the size of the particles can be tuned from a hundred nanometers with a low polydispersity index (deposition of 2 layers) up to micrometer scale (deposition of 6 layers). Upon the deposition of each cellulose derivative, the particle charge is reversed, and pH is observed to considerably affect the process thus demonstrating the electrostatic driving force for LbL deposition. The HR-SEM characterization suggests that the shape of the core-shell particles formed is reminiscent of the spherical vesicle template. The development of biobased nano- and micro-containers by the alternating deposition of oppositely charged cellulose derivatives onto a vesicle template offers several advantages, such as simplicity, reproducibility, biocompatibility, low-cost, mild reaction conditions, and high controllability over particle size and composition of the shell.

11.
Q Rev Biophys ; 54: e3, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33541444

ABSTRACT

Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.


Subject(s)
Cellulose , DNA , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents
12.
Carbohydr Polym ; 252: 117092, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183583

ABSTRACT

Cellulose-based oil-in-water (O/W) emulsions were studied by diffusing wave spectroscopy (DWS) regarding the effect of the cellulose concentration and mixing rate on the average droplet size, microrheological features and stability. Furthermore, the microstructure of these emulsions was imaged by cryo-scanning electron microscopy (cryo-SEM). The micrographs showed that cellulose was effectively adsorbed at the oil-water interface, resembling a film-like shell that protected the oil droplets from coalescing. The non-adsorbed cellulose that was observed in the continuous aqueous medium, contributed to the enhancement of the viscosity of the medium, leading to an improvement in the stability of the overall system. Generally, the higher the cellulose concentration and mixing rate, the smaller the emulsion droplets formed, and the higher was their stability. The combination of both techniques, DWS and cryo-SEM, revealed a very appealing and robust methodology for the characterization and design of novel emulsion-based formulations.

13.
Adv Mater ; 32(38): e2002824, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803872

ABSTRACT

Triboelectric nanogenerators (TENGs) have attracted increasing attention because of their excellent energy conversion efficiency, the diverse choice of materials, and their broad applications in energy harvesting devices and self-powered sensors. New materials have been explored, including green materials, but their performances have not yet reached the level of that for fluoropolymers. Here, a high-performance, fully green TENG (FG-TENG) using cellulose-based tribolayers is reported. It is shown that the FG-TENG has an output power density of above 300 W m-2 , which is a new record for green-material-based TENGs. The high performance of the FG-TENG is due to the high positive charge density of the regenerated cellulose. The FG-TENG is stable after more than 30 000 cycles of operations in humidity of 30%-84%. This work demonstrates that high-performance TENGs can be made using natural green materials for a broad range of applications.

14.
Int J Biol Macromol ; 164: 3454-3461, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827621

ABSTRACT

Lignin is a natural, renewable resource with potential to be used in biomaterials. Due to its complex structure, its efficient dissolution is still challenging, which hinders its applicability at large scale. This challenge become harder considering the current need of sustainable and environmentally friendly solvents. To the best of our knowledge, this work reports for the first time the dissolution of kraft lignin in levulinic acid, a "green" solvent, and compares its efficiency with common carboxylic acids and sulfuric acid. It has been found that levulinic acid has a high capacity to dissolve kraft lignin at room temperature (40 wt% solubility), and it efficiency is not compromised when diluting the acid with water (up to 40 wt% water content). The Kamlet-Taft π⁎ parameter of the different acidic solvents was estimated and found to correlate well with their solubility performance. Lignins previously dissolved in levulinic and formic acids were selected to be regenerated and minor differences were found in thermal stability and morphological structure, when compared to native kraft lignin. However, an increase in the content of the carbonyl groups in the regenerated lignin material was observed.


Subject(s)
Levulinic Acids/chemistry , Lignin/chemistry , Solvents/chemistry , Chemical Phenomena , Rheology , Solubility , Spectrum Analysis
15.
Carbohydr Polym ; 236: 116068, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172883

ABSTRACT

In this study, the effect of different alcohols and esters as a coagulation medium in the regeneration of cellulose dissolved in an aqueous LiOH-urea-based solvent was thoroughly investigated using various methods such as solid state NMR, X-ray diffraction, water contact angle, oxygen gas permeability, mechanical testing, and scanning electron microscopy. It was observed that several material properties of the regenerated cellulose films follow trends that correlate to the degree of cellulose II crystallinity, which is determined to be set by the miscibility of the coagulant medium (nonsolvent) and the aqueous alkali cellulose solvent rather than the nonsolvents' polarity. This article provides an insight, thus creating a possibility to carefully tune and control the cellulose material properties when tailor-made for different applications.

16.
Polymers (Basel) ; 12(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046040

ABSTRACT

In this work, non-derivatized cellulose pulp was dissolved in a cold alkali solution (LiOH/urea) and chemically cross-linked with methylenebisacrylamide (MBA) to form a robust hydrogel with superior water absorption properties. Different cellulose concentrations (i.e., 2, 3 and 4 wt%) and MBA/glucose molar ratios (i.e., 0.26, 0.53 and 1.05) were tested. The cellulose hydrogel cured at 60 °C for 30 min, with a MBA/glucose molar ratio of 1.05, exhibited the highest water swelling capacity absorbing ca. 220 g H2O/g dry hydrogel. Moreover, the data suggest that the cross-linking occurs via a basic Michael addition mechanism. This innovative procedure based on the direct dissolution of unmodified cellulose in LiOH/urea followed by MBA cross-linking provides a simple and fast approach to prepare chemically cross-linked non-derivatized high-molecular-weight cellulose hydrogels with superior water uptake capacity.

17.
Polymers (Basel) ; 11(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618916

ABSTRACT

Adhesives and sealants (AS) are materials with excellent properties, versatility, and simple curing mechanisms, being widely used in different areas ranging from the construction to the medical sectors. Due to the fast-growing demand for petroleum-based products and the consequent negative environmental impact, there is an increasing need to develop novel and more sustainable sources to obtain raw materials (monomers). This reality is particularly relevant for AS industries, which are generally dependent on non-sustainable fossil raw materials. In this respect, biopolymers, such as cellulose, starch, lignin, or proteins, emerge as important alternatives. Nevertheless, substantial improvements and developments are still required in order to simplify the synthetic routes, as well as to improve the biopolymer stability and performance of these new bio-based AS formulations. This environmentally friendly strategy will hopefully lead to the future partial or even total replacement of non-renewable petroleum-based feedstock. In this brief overview, the general features of typical AS are reviewed and critically discussed regarding their drawbacks and advantages. Moreover, the challenges faced by novel and more ecological alternatives, in particular lignocellulose-based solutions, are highlighted.

18.
Polymers (Basel) ; 11(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561633

ABSTRACT

Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).

19.
RSC Adv ; 9(41): 23925-23938, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530632

ABSTRACT

PEDOT: PSS organic printed electronics chemical interactions with the ink-receiving layer (IRL) of monopolar inkjet paper substrates and coating color composition were evaluated through Raman spectroscopy mapping in Z (depth) and (XY) direction, Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDS). Other evaluated properties of the IRLs were pore size distribution (PSD), surface roughness, ink de-wetting, surface energy and the impact of such characteristics on the electronics performance of the printed layers. Resin-coated inkjet papers were compared to a multilayer coated paper substrate that also contained an IRL but did not contain the plastic polyethylene (PE) resin layer. This substrate showed better electronic performance (i.e., lower sheet resistance), which we attributed to the inert coating composition, higher surface roughness and higher polarity of the surface which influenced the de-wetting of the ink. The novelty is that this substrate was rougher and with somewhat lower printing quality but with better electronic performance and the advantage of not having PE in their composite structure, which favors recycling.

20.
Nanomaterials (Basel) ; 8(4)2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29661992

ABSTRACT

In this study, Cu and Cu2O nanoparticles (NPs) were synthesized through chemical reduction of soluble copper-chelating ligand complexes using formaldehyde as a reducing agent. The influence of various chelating ligands, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and a surface-active derivative of DTPA (C12-DTPA), as well as surfactants (i.e., hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium chloride (DoTAC), sodium dodecyl sulfate (SDS), and dimethyldodecylamine-N-oxide (DDAO)), on morphology and the composition of produced NPs was investigated. In the absence of surfactants, spherical copper particles with polycrystalline structure could be obtained. X-ray diffraction (XRD) analysis revealed that, in the presence of EDTA, the synthesized NPs are mainly composed of Cu with a crystallite size on the order of 35 nm, while with DTPA and C12-DTPA, Cu2O is also present in the NPs as a minority phase. The addition of ionic surfactants to the copper-EDTA complex solution before reduction resulted in smaller spherical particles, mainly composed of Cu. However, when DDAO was added, pure Cu2O nano-octahedrons were formed, as verified by high-resolution scanning electron microscopy (HR-SEM) and XRD. Furthermore, a hybrid material could be successfully prepared by mixing the octahedral Cu2O NPs with cellulose dissolved in a LiOH/urea solvent system, followed by spin-coating on silica wafers. It is expected that this simple and scalable route to prepare hybrid materials could be applied to a variety of possible applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...