Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 378(6623): 983-989, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454826

ABSTRACT

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Subject(s)
DNA Breaks, Single-Stranded , DNA Demethylation , DNA Repair , Enhancer Elements, Genetic , Induced Pluripotent Stem Cells , Neurons , Thymine DNA Glycosylase , Cell Differentiation , Neurons/enzymology , 5-Methylcytosine/metabolism , Humans , Cell Transdifferentiation
SELECTION OF CITATIONS
SEARCH DETAIL