Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0275149, 2022.
Article in English | MEDLINE | ID: mdl-36417456

ABSTRACT

Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.


Subject(s)
Carbon , Soil , Carbon/chemistry , Soil/chemistry , Wetlands , Nitrogen
2.
Mar Environ Res ; 72(5): 248-57, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22000271

ABSTRACT

Here we present results of an initial assessment of the impacts of a water diversion event on the concentrations and chemical composition of dissolved organic matter (DOM) and bacterioplankton community composition in Barataria Bay, Louisiana U.S.A, an important estuary within the Mississippi River Delta complex. Concentrations and spectral properties of DOM, as reflected by UV/visible absorbance and fluorescence, were strikingly similar at 26 sites sampled along transects near two western and two eastern areas of Barataria Bay in July and September 2010. In September 2010, dissolved organic carbon (DOC) was significantly higher (568.1-1043 µM C, x=755.6+/-117.7 µM C, n=14) than in July 2010 (249.1-577.1 µM C, x=383.7+/-98.31 µM C, n=14); conversely, Abs254 was consistently higher at every site in July (0.105-0.314) than in September (0.080-0.221), averaging 0.24±0.06 in July and 0.15±0.04 in September. Fluorescence data via the fluorescence index (FI450/500) revealed that only 30% (8 of 26) of the July samples had an FI450/500 above 1.36, compared to 96% (25 of 26) for the September samples. This indicates a more terrestrial origin for the July DOM. Bacterioplankton from eastern sites differed in composition from bacterioplankon in western sites in July. These differences appeared to result from reduced salinities caused by the freshwater diversion. Bacterioplankton communities in September differed from those in July, but no spatial structure was observed. Thus, the trends in bacterioplankton and DOM were likely due to changes in water masses (e.g., input of Mississippi River water in July and a return to estuarine waters in September). Discharge of water from the Davis Pond Freshwater Diversion (DPFD) through Barataria Bay may have partially mitigated some adverse effects of the oil spill, inasmuch as DOM is concerned.


Subject(s)
Bacteria/classification , Bays/analysis , Carbon/analysis , Fresh Water , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bays/microbiology , DNA, Bacterial/analysis , Environmental Monitoring , Fluorescence , Louisiana , Oxygen/analysis , Petroleum Pollution/prevention & control , Phylogeny , Polymerase Chain Reaction , Principal Component Analysis , Salinity , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...