Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(12): 2720-2729, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38454905

ABSTRACT

Peptide self-assembly has been highly studied to understand the pathways in forming higher order structures along with the development and application of resulting hydrogel materials. Driven by noncovalent interactions, peptide hydrogels are stimuli-responsive to any addition to its gelling conditions. Here, a Phe-His based peptide, C14-FH(Trt)-OH, was synthesized and characterized with 1H NMR, FT-IR, MS, UV-vis spectroscopies and elemental analysis. Based on SEM imaging, the dipeptide conjugate was capable of forming a nanofibrous, interconnected network encapsulating buffer to produce a supramolecular hydrogel. Through the addition of Zn2+ and Cu2+, there is a clear change in the self-assembled nanostructures characterized through SEM. With this effect on self-assembly follows a change in the viscoelastic properties of the material, as determined through rheological frequency sweeps, with 2 and 3 orders of magnitude decreases in the elastic modulus G' in the presence of Zn2+ and Cu2+ respectively. This highlights the tunability of soft material properties with peptide design and self-assembly, through metal ions and Nδ-directed coordination.

2.
Sci Rep ; 13(1): 16739, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798351

ABSTRACT

The exploration of the chiral configurations of enantiomers represents a highly intriguing realm of scientific inquiry due to the distinct roles played by each enantiomer (D and L) in chemical reactions and their practical utilities. This study introduces a pioneering analytical methodology, termed fast Fourier transform capacitance voltammetry (FFT-CPV), in conjunction with principal component analysis (PCA), for the identification and quantification of the chiral forms of tartaric acid (TA), serving as a representative model system for materials exhibiting pronounced chiral characteristics. The proposed methodology relies on the principle of chirality, wherein the capacitance signal generated by the adsorption of D-TA and L-TA onto the surface of a platinum electrode (Pt-electrode) in an acidic solution is harnessed. The capacitance voltammograms were meticulously recorded under optimized experimental conditions. To compile the final dataset for the analyte, the average of the FFT capacitance voltammograms of the acidic solution (without the presence of the analyte) was subtracted from those containing the analyte. A distinct arrangement was obtained by employing PCA as a linear data transformation method, representing D-TA and L-TA in a two/three-dimensional space. The outcomes of the study reveal the successful detection of the two chiral forms of TA with a considerable degree of precision and reproducibility. Moreover, the proposed method facilitated the establishment of two linear response ranges for the concentration values of each enantiomer, spanning from 1 to 20 µM, and 50 to 500 µM. The respective detection limits were also determined to be 0.4 µM for L-TA and 1.3 µM for D-TA. These findings underscore the satisfactory sensitivity and efficiency of the proposed method in both qualitative and quantitative assessments of the chiral forms of TA.

3.
Materials (Basel) ; 16(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37763359

ABSTRACT

In this study, a bimetallic palladium-copper aerogel was synthesized and used for modification of a graphite paste electrode (Pd-Cu/GPE), allowing the sensitive determination of bisphenol A (BPA). Different techniques, such as SEM, TEM, XPS, and AFM, were used for characterization of the Pd-Cu aerogel. To elucidate the properties of the Pd-Cu/GPE, the electrochemistry methods such as differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy were used. DPV measurements were conducted in phosphate electrolyte and buffer solution (0.2 M PBS, pH 5) at a potential range from 0.4 to 0.9 V vs. Ag/AgCl. The DPVs peaks currents increased linearly with BPA concentrations in the 0.04-85 and 85-305 µM ranges, with a limit of detection of 20 nM. The modified electrode was successfully used in real samples to determine BPA, and the results were compared to the standard HPLC method. The results showed that the Pd-Cu/GPE had good selectivity, stability, and sensitivity for BPA determination.

4.
Chemosphere ; 342: 140003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648164

ABSTRACT

The widespread occurrence of endocrine disruptor compounds in wastewater has garnered significant attention owing to their toxicity, even at low concentrations, and their persistence in the water body. Among various analytical techniques, electrochemical sensors become popular for the environmental monitoring of water pollutants due to their low cost, rapid detection, high sensitivity, and selectivity. In this study, the mesoporous Ni (MNi) material was synthesized with an innovative method using Pluronic™ F-127 as a soft template and applied as a modifier for the simultaneous electrochemical sensing of hydroquinone (HQ), catechol (CC), bisphenol A (BPA), and bisphenol S (BPS). MNi with high porosity efficiently enhanced the redox-active surface area and conductivity of the glassy carbon electrode contributing to a significantly improved sensitivity in the detection of target chemicals. The pore size and surface area of MNi were estimated based on atomic force microscopy and Brunauer Emmett and Teller techniques to be ∼14.2 nm and 31.1 m2 g-1, respectively. The limit of detection for HQ, CC, BPA, and BPS was determined to be 5.3, 5.7, 5.6, and 61.5 nM, respectively. The electrochemical sensor presented in this study holds promise as a platform for developing portable and miniaturized tools offering the rapid and sensitive detection of these hazardous phenolic compounds in environmental water samples.

5.
ACS Appl Mater Interfaces ; 15(23): 27502-27514, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37266914

ABSTRACT

In this proof-of-concept study, an ultralight graphene oxide aerogel (GOx-Aero) decorated with bimetallic palladium-iron nanoparticles (Pd-Fe) was synthesized and immobilized on a glassy carbon electrode (GCE) for electrochemical sensor applications. The main objective of this work was to develop a sensitive electrochemical sensor capable of simultaneously detecting eight biomolecules, including ascorbic acid (AA), dopamine (DA), uric acid (UA), 8-hydroxyguanine (8HG), guanine (G), adenine (A), thymine (T), and cytosine (C). To the best of our knowledge, this is the first time that an electrochemical sensor has been able to detect eight biomolecules simultaneously. The bimetallic GOx aerogel significantly enhanced the performance of the sensor by increasing the electroactive area, conductivity, and anodic peak current response. The sensor demonstrated sharp, well-defined, and continuous oxidation peaks for all eight analytes of interest and wide linear ranges of 5.0-1750, 0.25-100.0, 0.5-500.0, 0.5-375.0, 0.5-500.0, 0.5-500.0, 5.0-1500.0, and 5.0-1500.0 µM for AA, DA, UA, 8HG, G, A, T, and C, respectively. The prepared sensor also exhibited excellent stability, reproducibility, and sensitivity with a very low limit of detection (LOD) of 553.7, 1.8, 69.6, 43.2, 42.9, 72.3, 57.2, and 318.4 nM for AA, DA, UA, 8HG, G, A, T, and C, respectively. The Pd-Fe-GOx-Aero-GCE was also tested in various real samples such as artificial saliva, artificial cerebrospinal fluid (CSF), salmon sperm DNA, and genomic DNA from calf thymus, where it demonstrated good recovery values. Additionally, the novel developed sensor was used to monitor the interaction between the anticancer drug, cisplatin, which has well-described binding affinity with the G and A bases in DNA. Overall, Pd-Fe-GOx-Aero-GCE displayed an extremely promising platform not only for the simultaneous detection of eight biomolecules in complex biological matrices but also for DNA-drug interaction studies toward the development of electrochemical high-throughput drug screening assays, which is of great importance in the field.


Subject(s)
Graphite , Nanoparticles , Male , Humans , Reproducibility of Results , Electrochemical Techniques , Semen , Graphite/chemistry , Dopamine/chemistry , Carbon/chemistry , Oxidation-Reduction , Ascorbic Acid/chemistry , Uric Acid/chemistry , Electrodes
6.
Nanomaterials (Basel) ; 13(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177060

ABSTRACT

In this proof-of-concept study, a novel hybrid nanomaterial-based electrochemical sensor was developed for the simultaneous detection of four DNA bases. For the modification of the working electrode surface, graphene oxide quantum dots (GOQDs) were synthesized using a solvothermal method. GOQDs were then used for the preparation of a hybrid nanomaterial with multi-walled carbon nanotubes (GOQD-MWCNT) using a solvothermal technique for the first time. Transmission electron microscopy (TEM) was used to characterize the GOQDs-MWCNTs. A glassy carbon electrode (GCE) was modified with the GOQDs-MWCNTs using Nafion™ to prepare a GOQD-MWCNT/GCE for the simultaneous determination of four DNA bases in phosphate buffer solution (PBS, pH 7.0) using differential pulse voltammetry (DPV). The calibration plots were linear up to 50, 50, 500, and 500 µM with a limit of detection at 0.44, 0.2, 1.6, and 5.6 µM for guanine (G), adenine (A), thymine (T) and cytosine (C), respectively. The hybrid-modified sensor was used for the determination of G, A, T, and C spiked in the artificial saliva samples with the recovery values ranging from 95.9 to 106.8%. This novel hybrid-modified electrochemical sensor provides a promising platform for the future development of a device for cost-effective and efficient simultaneous detection of DNA bases in real biological and environmental samples.

7.
Bioresour Technol ; 361: 127752, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940322

ABSTRACT

This proof-of-concept study describes the enhanced performance efficiency of the dual-chambered microbial fuel cell equipped with the fabricated unmodified ceramic membranes and ceramic membranes modified with 5 % and 10 % (w/w) durum wheat semolina in comparison with the commercially available NafionTM 117 membranes. The chemical oxygen demand removal efficiencies were determined to be 85.6 ± 0.1, 72.1 ± 0.2 and 68.6 ± 0.1 % for microbial fuel cell equipped with 10 % (w/w) semolina-modified, 5 % (w/w) semolina-modified and unmodified ceramic membrane, respectively, which indicated the improved wastewater treatment efficiency with increasing content of semolina. Preliminary studies showed that the 10 % (w/w) semolina-modified ceramic was cost-effective (64 USD/m2) with improved water uptake, good proton mobility, low oxygen diffusion in addition to the enhanced power and current density output. The semolina-modified ceramic membranes have the potential to become a cost-effective alternative for the high-efficiency production of bioelectricity using microbial fuel cells.


Subject(s)
Bioelectric Energy Sources , Ceramics/chemistry , Electrodes , Porosity , Triticum , Wastewater
8.
Chemistry ; 28(51): e202200953, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35749651

ABSTRACT

An enzymatic biosensor has been developed for the determination of selenate (SeO4 2- ), in which selenate reductase (SeR) is chemically attached to a gold disk electrode by lipoic acid N-hydroxysuccinimide ester as linker, allowing the catalytic reduction of the SeO4 2- to SeO3 2- . Modification of the gold electrode was characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and electrochemistry. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were performed in different buffers for selenate determination. Under optimum conditions, the calibration curve was linear over the range 7.0-3900.0 µg L-1 with limits of detection and quantification of 4.97 and 15.56 µg L-1 , respectively. The possible interference of the relevant oxyanions SO4 2- , NO3 - , NO2 - , PO4 3- and AsO4 3- in the determination of SeO4 2- was studied. Finally, the proposed biosensor was used to determine SeO4 2- with recovery between 95.2 and 102.4 % in different real water samples.


Subject(s)
Biosensing Techniques , Bacteria , Biosensing Techniques/methods , Electrochemistry/methods , Electrodes , Gold/chemistry , Selenic Acid
9.
Micromachines (Basel) ; 13(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35457879

ABSTRACT

Herein, a novel hybrid bilayer membrane is introduced as a platform to study the aggregation of amyloid-ß1-42 (Aß1-42) peptide on surfaces. The first layer was covalently attached to a glassy carbon electrode (GCE) via diazonium electrodeposition, which provided a highly stable template for the hybrid bilayer formation. To prepare the long-chain hybrid bilayer membrane (lcHBLM)-modified electrodes, GCE surfaces were modified with 4-dodecylbenzenediazonium (DDAN) followed by the modification with dihexadecyl phosphate (DHP) as the second layer. For the preparation of short-chain hybrid bilayer membrane (scHBLM)-modified electrodes, GCE surfaces were modified with 4-ethyldiazonium (EDAN) as the first layer and bis(2-ethylhexyl) phosphate (BEHP) was utilized as the second layer. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to characterize the bilayer formation. Both positively charged [Ru(NH3)6]3+ and negatively charged ([Fe(CN)6]3-/4-) redox probes were used for electrochemical characterization of the modified surfaces using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS results showed a decrease in charge transfer resistance (Rct) upon incubation of Aß1-42 on the hybrid bilayer-modified surfaces. This framework provides a promising electrochemical platform for designing hybrid bilayers with various physicochemical properties to study the interaction of membrane-bound receptors and biomolecules on surfaces.

10.
ACS Chem Neurosci ; 13(8): 1178-1186, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35413176

ABSTRACT

Parkinson's disease (PD) is associated with the aggregation and misfolding of a-synuclein (a-syn) protein in dopaminergic neurons. The misfolding process is heavily linked to copper dysregulation in PD. Experimental evidence supports the hypothesis that the co-presence of Cu(II) and α-syn facilitates the aggregation of α-syn, affecting the pathological development of PD. Recent literature has shown that pyrroloquinoline quinone (PQQ) contains strong neuroprotective activity by reducing the reactive oxygen species (ROS) production by α-syn. Despite these known facts, minimal studies have been done on the antioxidant effect of PQQ against ROS formation in the presence of Cu(II) and α-syn-119. Thus, it is of great significance to study the interaction between all three components, PQQ, Cu(II), and α-syn-119. In this proof-of-concept study, a variety of chemical techniques were employed to examine the antioxidant effect of PQQ on ROS that α-syn-119 produced in the presence of Cu(II). Our results showed that PQQ effectively prevented ROS formation in SH-SY5Y human differentiated neuronal cells. Thioflavin T (ThT) fluorescence assay, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM) were applied, where PQQ was able to actively prevent fibrillation of α-syn-119 in the presence of Cu(II). This finding was further confirmed using electrochemical impedance spectroscopy (EIS), where the binding of PQQ to the α-syn-119 suppressed the aggregation process on the electrode surface. With these encouraging results, we envisage that PQQ and its derivatives can be a promising candidate for further studies as a multitarget therapeutic agent toward PD therapy.


Subject(s)
Parkinson Disease , alpha-Synuclein , Antioxidants/pharmacology , Copper , Dopaminergic Neurons/metabolism , Humans , PQQ Cofactor/pharmacology , Parkinson Disease/drug therapy , Reactive Oxygen Species/metabolism , alpha-Synuclein/metabolism
11.
Analyst ; 146(14): 4545-4556, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34251376

ABSTRACT

α-Synuclein (α-syn) is a hallmark protein of Parkinson's disease (PD). The aggregation process of α-syn has been heavily associated with the pathogenesis of PD. With the exponentially growing number of potential therapeutic compounds that can inhibit the aggregation of α-syn, there is now a significant demand for a high-throughput analysis system. Herein, a novel flow injection analysis system with an electrochemical biosensor as the detector was developed to study the interaction of a well-described antioxidant and amyloid inhibitor, pyrroloquinoline quinone (PQQ) with α-synuclein peptides. Screen-printed gold electrodes (SPEs) were modified using heptapeptides from α-syn wild-type (WT) and mutants such as lysine knock-out (ETEE) and E46K. Affinity binding events between these peptides and PQQ were analyzed by electrochemical impedance spectroscopy (EIS) and further confirmed by high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), and nuclear magnetic resonance (NMR) spectroscopy. HPLC and LC/MS results revealed that PQQ formed a stable complex with α-syn. NMR results confirmed that the α-syn-PQQ complex was formed via a Schiff base formation-like process. In addition, results showed that lysine residues influenced the binding event, in which the presence of an extra lysine stabilized the α-syn-PQQ complex, and the absence of a lysine significantly decreased the interaction of α-syn with PQQ. Therefore, we concluded that EIS is a promising technique for the evaluation of the interaction between PQQ-based amyloid inhibitors and α-syn. The electrochemical flow injection analysis assembly provided a rapid and low-cost drug discovery platform for the evaluation of small molecule-protein interactions.


Subject(s)
Parkinson Disease , Flow Injection Analysis , Humans , PQQ Cofactor , Peptides , alpha-Synuclein/genetics
12.
J Trace Elem Med Biol ; 68: 126821, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34315038

ABSTRACT

OBJECTIVES: In this research, the biological properties of the yttrium (III) (Y) complex, with 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) ligand, were examined for in vitro fish DNA (FS-DNA)/ bovine serum albumin (BSA) interactions, DNA-cleavage, anticancer and antibacterial activities. METHODS: Multi-spectrophotometric techniques and computational calculations were used for the interaction studies of the BSA and FS-DNA with the Y-complex. Absorption and fluorescence spectroscopy methods were used to define thermodynamic parameters, the binding constants (Kb), and the probable binding mechanism. Also, the DFT (density functional theory) study and molecular docking calculation of the Y-complex were done. Besides, the nanocarriers of Y-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. Finally, DNA-cleavage, anticancer, and antibacterial activities of this complex were investigated. RESULTS: The absorption and fluorescence measurements were exhibited that the Y-complex has a high binding affinity to FS-DNA and BSA through a static mechanism. The negative thermodynamic parameter values for both DNA/BSA binding were confirmed that the hydrogen bonds and van der Waals forces played an essential role in the spontaneous bonding procedure. The site marker competitive studies for BSA confirmed that the Y-complex bonds to the sub-domain IB of protein (site III) on BSA, which was entirely agreement by docking calculation. The complex has displayed efficient DNA cleavage, antifungal and antibacterial activities. The anticancer activity of the Y-complex and its starch/lipid nano-encapsulated was carried out in cancer cell lines, which exposed considerably high activity. CONCLUSIONS: Thus, Y-complex can be transported professionally through BSA in the blood and bonds in the groove of DNA. Base on biological applications of the Y-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer and antibacterial candidates.


Subject(s)
DNA Cleavage , Serum Albumin, Bovine , Animals , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA/metabolism , Lipids , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Starch , Thermodynamics , Yttrium
13.
RSC Adv ; 11(20): 11813-11820, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423759

ABSTRACT

Structure and surface area are critical factors for catalysts in fuel cells. Hence, a spinel nickel ferrite mesoporous (SNFM) is prepared via the solution combustion technique, an efficient and one-step synthesis. Dynamic X-ray analysis has clarified the structural properties of SNFM. The grain size of SNFM is determined to be ∼11.6 nm. The specific surface area (87.69 m2. g-1) of SNFM is obtained via the Brunauer-Emmett-Teller method. The Barrett-Joyner-Halenda pore size distributions revealed that the size of the mesopores in as-synthesized SNFM mainly falls in the size range of 2-16 nm. Scanning electron microscopy studies showed the regularities involved during porous-structure formation. SNFM is employed as the support for nano-structured palladium (PdNS). Field emission scanning electron microscope studies of PdNS-SNFM showed the deposition of PdNS in cavities and on/in the pores of SNFM. The electrochemical surface area obtained for PdNS-SNFM is about 27 times larger than that of PdNS via cyclic voltammetry. The electrochemical studies are utilized to study the features and catalytic performance of PdNS-SNFM in the electro-oxidation of diverse small organic fuels, whereas the electrooxidation of diethylene glycol is reported for first-time.

14.
J Biomol Struct Dyn ; 39(14): 5105-5116, 2021 09.
Article in English | MEDLINE | ID: mdl-32672500

ABSTRACT

To investigate the chemotherapeutic and pharmacokinetic aspects of two lanthanide complexes (Tb(III) and La(III) containing 2,2'-bipyridine ligand), in vitro binding studies were carried out with BSA by employing multiple biophysical methods and molecular modeling study. There are different techniques containing fluorescence, absorption spectroscopy and competitive experiments to determine the interaction mode between BSA and these complexes. These complexes efficiently quenched the BSA emission through a static procedure. The results showed that the terbium and lanthanum complexes exhibited a high propensity for BSA interaction via van der Waals force. Further, competitive examination and docking study showed that the interaction site of these complexes on BSA is site III. The results of docking calculations were in good agreement with experimental examinations. Also, the energy transfer from BSA to these complexes has happened with high possibility. Moreover, antimicrobial studies of different bacterial and fungi indicated its promising antibacterial activity. In vitro cytotoxicity of the Tb complex and La complex was carried out in MCF-7 and A-549 cell lines, which revealed significantly good activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Infective Agents , Lanthanoid Series Elements , 2,2'-Dipyridyl/pharmacology , Anti-Infective Agents/pharmacology , Binding Sites , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Terbium , Thermodynamics
15.
J Trace Elem Med Biol ; 61: 126564, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32485498

ABSTRACT

BACKGROUND: There is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects. OBJECTIVES: Base on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined. METHODS: The interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines. RESULTS: The experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound. CONCLUSIONS: Tb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.

16.
Biosensors (Basel) ; 10(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230779

ABSTRACT

Herein, graphene oxide nanoribbons (GONRs) were obtained from the oxidative unzipping of multi-walled carbon nanotubes. Covalent coupling reaction of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS) with amine functional groups (-NH2) of the chitosan natural polymer (CH) was used for entrapping GONRs on the activated glassy carbon electrode (GCE/GONRs-CH). The nanocomposite was characterized by high-resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). In addition, the modification steps were monitored using FTIR. The nanocomposite-modified electrode was used for the simultaneous electrochemical determination of four DNA bases; guanine (G), adenine (A), thymine (T) and cytosine (C). The nanocomposite-modified GCE displayed a strong, stable and continuous four oxidation peaks during electrochemistry detection at potentials 0.63, 0.89, 1.13 and 1.27 V for G, A, T and C, respectively. The calibration curves were linear up to 256, 172, 855 and 342 µM with detection limits of 0.002, 0.023, 1.330 and 0.641 µM for G, A, T and C, respectively. The analytical performance of the GCE/GONRs-CH has been used for the determination of G, A, T and C in real samples and obtained a recovery percentage from 91.1%-104.7%. Our preliminary results demonstrated that GCE/GONRs-CH provided a promising platform to detect all four DNA bases for future studies on DNA damage and mutations.


Subject(s)
Adenine/chemistry , Chitosan/chemistry , Cytosine/chemistry , Electrochemical Techniques/methods , Graphite/chemistry , Guanine/chemistry , Nanotubes, Carbon/chemistry , Thymine/chemistry
17.
Mater Sci Eng C Mater Biol Appl ; 110: 110568, 2020 May.
Article in English | MEDLINE | ID: mdl-32204055

ABSTRACT

In this proof-of-concept study, a thiol-functionalized sol-gel-based carbon ceramic electrode (CCE) was developed. This CCE was further modified by immobilizing gold nanoparticles (AuNP) in the thiol-functionalized ceramic matrix as well as incorporating multi-walled carbon nanotubes (MWCNT) within the pores of this ceramic sol-gel. The proposed electrode (MWCNT-AuNP-CCE) was used for the simultaneous determination of purine derivatives, uric acid (UA), xanthine (XA) and caffeine (CA). The simultaneous detection of these compounds is essential because these purine derivatives often coexist in real samples. Moreover, since these analytes have the capacity to interchange structures, developing a simultaneous detector is important. This electrode was successfully characterized using environmental scanning electron microscopy (ESEM) with secondary and back scattering electron detectors, energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were performed in phosphate buffer solution (0.1 M PBS, pH 6) at a potential window of 0.2 to 1.1 V (vs. Ag/AgCl). The proposed modified electrode (MWCNT-AuNP-CCE) displayed three well-defined, stable and continuous oxidation peaks at 0.3, 0.7 and 1.0 V for UA, XA, and CA, respectively. The resulting catalytic current at the surfaces showed a linear dependence to the concentrations of UA, XA and CA for up to 225, 225 and 1500 µM, respectively. The limit of detection was determined to be 50, 63 and 354 nM for UA, XA and CA, respectively. The analytical performance of MWCNT-AuNP-CCE was challenged with real samples such as human serum and urine with recoveries ranging between 98.1 and 102.6%. Moreover, the selectivity of sensor was further challenged with very similar purine molecules, theobromine and theophylline, which contain one less methyl group than CA. Overall, MWCNT-AuNP-CCE exhibited a promising platform for the future development of sensitive electrochemical sensors for the detection of purine derivatives in real samples.


Subject(s)
Ceramics/chemistry , Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Purines/analysis , Electrodes
18.
Micromachines (Basel) ; 11(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168840

ABSTRACT

In this study, we developed a modified glassy carbon electrode (GCE) with graphene oxide, multi-walled carbon nanotube hybrid nanocomposite in chitosan (GCE/GO-MWCNT-CHT) to achieve simultaneous detection of four nucleobases (i.e., guanine (G), adenine (A), thymine (T) and cytosine (C)) along with uric acid (UA) as an internal standard. The nanocomposite was characterized using TEM and FT-IR. The linearity ranges were up to 151.0, 78.0, 79.5, 227.5, and 162.5 µM with a detection limit of 0.15, 0.12, 0.44, 4.02, 4.0, and 3.30 µM for UA, G, A, T, and C, respectively. Compared to a bare GCE, the nanocomposite-modified GCE demonstrated a large enhancement (~36.6%) of the electrochemical active surface area. Through chronoamperometric studies, the diffusion coefficients (D), standard catalytic rate constant (Ks), and heterogenous rate constant (Kh) were calculated for the analytes. Moreover, the nanocomposite-modified electrode was used for simultaneous detection in human serum, human saliva, and artificial saliva samples with recovery values ranging from 95% to 105%.

19.
Anal Bioanal Chem ; 412(8): 1769-1784, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32043201

ABSTRACT

Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of - 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 µM for both HQ and CC, while for RS, it was from 2 to 350.5 µM. The limit of detection was determined to be 0.18, 0.01, and 0.02 µM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract.


Subject(s)
Aniline Compounds/chemistry , Benzene Derivatives/analysis , Ferrocyanides/chemistry , Nanostructures/chemistry , Benzene Derivatives/chemistry , Calibration , Electrodes , Humans , Hydrogen-Ion Concentration , Isomerism , Kinetics , Limit of Detection , Spectroscopy, Fourier Transform Infrared
20.
RSC Adv ; 10(39): 23002-23015, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35520322

ABSTRACT

To determine the chemotherapeutic and pharmacokinetic aspects of an ytterbium complex containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen), in vitro binding studies were carried out with FS-DNA/BSA by employing multiple biophysical methods and a molecular modeling study. There are different techniques including absorption spectroscopy, fluorescence spectroscopy, circular dichroism studies, viscosity experiments (only in the case of DNA), and competitive experiments used to determine the interaction mode between DNA/BSA and the ytterbium-complex. The results showed that the Yb-complex exhibited a high propensity for the interaction of BSA and DNA via hydrophobic interactions and van der Waals forces. Further, a competitive examination and docking study showed that the interaction site of the ytterbium complex on BSA is site III. The results of docking calculations for DNA/BSA were in good agreement with experimental findings. The complex displays efficient DNA cleavage in the presence of hydrogen peroxide. Moreover, antimicrobial studies of different bacteria and fungi indicated its promising antibacterial activity. In vitro cytotoxicity studies of the Yb-complex, starch nano-encapsulated, and lipid nano-encapsulated were carried out in MCF-7 and A-549 cell lines, which revealed significantly good activity. The results of anticancer activity studies showed that the cytotoxic activity of the Yb-complex was increased when encapsulated with nanocarriers. Based on biological applications of the Yb-complex, it can be concluded that this complex and its nanocarriers can act as novel anticancer and antimicrobial candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...