Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Toxics ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36006162

ABSTRACT

A study was conducted within the European Human Biomonitoring Initiative (HBM4EU) to characterize occupational exposure to Cr(VI). Herein we present the results of biomarkers of genotoxicity and oxidative stress, including micronucleus analysis in lymphocytes and reticulocytes, the comet assay in whole blood, and malondialdehyde and 8-oxo-2'-deoxyguanosine in urine. Workers from several Cr(VI)-related industrial activities and controls from industrial (within company) and non-industrial (outwith company) environments were included. The significantly increased genotoxicity (p = 0.03 for MN in lymphocytes and reticulocytes; p < 0.001 for comet assay data) and oxidative stress levels (p = 0.007 and p < 0.001 for MDA and 8-OHdG levels in pre-shift urine samples, respectively) that were detected in the exposed workers over the outwith company controls suggest that Cr(VI) exposure might still represent a health risk, particularly, for chrome painters and electrolytic bath platers, despite the low Cr exposure. The within-company controls displayed DNA and chromosomal damage levels that were comparable to those of the exposed group, highlighting the relevance of considering all industry workers as potentially exposed. The use of effect biomarkers proved their capacity to detect the early biological effects from low Cr(VI) exposure, and to contribute to identifying subgroups that are at higher risk. Overall, this study reinforces the need for further re-evaluation of the occupational exposure limit and better application of protection measures. However, it also raised some additional questions and unexplained inconsistencies that need follow-up studies to be clarified.

2.
Nat Commun ; 13(1): 3798, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778420

ABSTRACT

There is an urgent need to apply effective, data-driven approaches to reliably predict engineered nanomaterial (ENM) toxicity. Here we introduce a predictive computational framework based on the molecular and phenotypic effects of a large panel of ENMs across multiple in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on multi-omics approaches combined with robust toxicity tests. Importantly, we identify mRNA-based toxicity markers and extensively replicate them in multiple independent datasets. We find that models based on combinations of omics-derived features and material intrinsic properties display significantly improved predictive accuracy as compared to physicochemical properties alone.


Subject(s)
Nanostructures , Biomarkers , Nanostructures/toxicity , RNA, Messenger/genetics
3.
Biomacromolecules ; 23(7): 2752-2766, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35680128

ABSTRACT

Cellulose nanofibrils (CNFs) have emerged as sustainable options for a wide range of applications. However, the high aspect ratio and biopersistence of CNFs raise concerns about potential health effects. Here, we evaluated the in vivo pulmonary and systemic toxicity of unmodified (U-CNF), carboxymethylated (C-CNF), and TEMPO (2,2,6,6-tetramethyl-piperidin-1-oxyl)-oxidized (T-CNF) CNFs, fibrillated in the same way and administered to mice by repeated (3×) pharyngeal aspiration (14, 28, and 56 µg/mouse/aspiration). Toxic effects were assessed up to 90 days after the last administration. Some mice were treated with T-CNF samples spiked with lipopolysaccharide (LPS; 0.02-50 ng/mouse/aspiration) to assess the role of endotoxin contamination. The CNFs induced an acute inflammatory reaction that subsided within 90 days, except for T-CNF. At 90 days post-administration, an increased DNA damage was observed in bronchoalveolar lavage and hepatic cells after exposure to T-CNF and C-CNF, respectively. Besides, LPS contamination dose-dependently increased the hepatic genotoxic effects of T-CNF.


Subject(s)
Cellulose , Nanofibers , Animals , Cellulose/toxicity , Lipopolysaccharides/toxicity , Lung , Mice , Nanofibers/toxicity
4.
Part Fibre Toxicol ; 19(1): 19, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296350

ABSTRACT

BACKGROUND: Cellulose nanofibrils (CNFs) have emerged as a sustainable and environmentally friendly option for a broad range of applications. The fibrous nature and high biopersistence of CNFs call for a thorough toxicity assessment, but it is presently unclear which physico-chemical properties could play a role in determining the potential toxic response to CNF. Here, we assessed whether surface composition and size could modulate the genotoxicity of CNFs in human bronchial epithelial BEAS-2B cells. We examined three size fractions (fine, medium and coarse) of four CNFs with different surface chemistry: unmodified (U-CNF) and functionalized with 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) (T-CNF), carboxymethyl (C-CNF) and epoxypropyltrimethylammonium chloride (EPTMAC) (E-CNF). In addition, the source fibre was also evaluated as a non-nanosized material. RESULTS: The presence of the surface charged groups in the functionalized CNF samples resulted in higher amounts of individual nanofibrils and less aggregation compared with the U-CNF. T-CNF was the most homogenous, in agreement with its high surface group density. However, the colloidal stability of all the CNF samples dropped when dispersed in cell culture medium, especially in the case of T-CNF. CNF was internalized by a minority of BEAS-2B cells. No remarkable cytotoxic effects were induced by any of the cellulosic materials. All cellulosic materials, except the medium fraction of U-CNF, induced a dose-dependent intracellular formation of reactive oxygen species (ROS). The fine fraction of E-CNF, which induced DNA damage (measured by the comet assay) and chromosome damage (measured by the micronucleus assay), and the coarse fraction of C-CNF, which produced chromosome damage, also showed the most effective induction of ROS in their respective size fractions. CONCLUSIONS: Surface chemistry and size modulate the in vitro intracellular ROS formation and the induction of genotoxic effects by fibrillated celluloses. One cationic (fine E-CNF) and one anionic (coarse C-CNF) CNF showed primary genotoxic effects, possibly partly through ROS generation. However, the conclusions cannot be generalized to all types of CNFs, as the synthesis process and the dispersion method used for testing affect their physico-chemical properties and, hence, their toxic effects.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Cellulose/toxicity , Comet Assay , DNA Damage , Humans , Nanofibers/chemistry , Nanofibers/toxicity , Reactive Oxygen Species
5.
Adv Sci (Weinh) ; 8(10): 2004588, 2021 05.
Article in English | MEDLINE | ID: mdl-34026454

ABSTRACT

Toxicogenomics opens novel opportunities for hazard assessment by utilizing computational methods to map molecular events and biological processes. In this study, the transcriptomic and immunopathological changes associated with airway exposure to a total of 28 engineered nanomaterials (ENM) are investigated. The ENM are selected to have different core (Ag, Au, TiO2, CuO, nanodiamond, and multiwalled carbon nanotubes) and surface chemistries (COOH, NH2, or polyethylene glycosylation (PEG)). Additionally, ENM with variations in either size (Au) or shape (TiO2) are included. Mice are exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by extensive histological/cytological analyses and transcriptomic characterization of lung tissue. The results demonstrate that transcriptomic alterations are correlated with the inflammatory cell infiltrate in the lungs. Surface modification has varying effects on the airways with amination rendering the strongest inflammatory response, while PEGylation suppresses toxicity. However, toxicological responses are also dependent on ENM core chemistry. In addition to ENM-specific transcriptional changes, a subset of 50 shared differentially expressed genes is also highlighted that cluster these ENM according to their toxicity. This study provides the largest in vivo data set currently available and as such provides valuable information to be utilized in developing predictive models for ENM toxicity.


Subject(s)
Lung/drug effects , Nanostructures/toxicity , Toxicogenetics/methods , Animals , Female , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Models, Animal , Nanostructures/chemistry , Nanostructures/classification , Transcriptome
6.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546402

ABSTRACT

Wood-derived nanofibrillated cellulose (NFC) has emerged as a sustainable material with a wide range of applications and increasing presence in the market. Surface charges are introduced during the preparation of NFC to facilitate the defibrillation process, which may also alter the toxicological properties of NFC. In the present study, we examined the in vitro toxicity of NFCs with five surface chemistries: nonfunctionalized, carboxymethylated, phosphorylated, sulfoethylated, and hydroxypropyltrimethylammonium-substituted. The NFC samples were characterized for surface functional group density, surface charge, and fiber morphology. Fibril aggregates predominated in the nonfunctionalized NFC, while individual nanofibrils were observed in the functionalized NFCs. Differences in surface group density among the functionalized NFCs were reflected in the fiber thickness of these samples. In human bronchial epithelial (BEAS-2B) cells, all NFCs showed low cytotoxicity (CellTiter-GloVR luminescent cell viability assay) which never exceeded 10% at any exposure time. None of the NFCs induced genotoxic effects, as evaluated by the alkaline comet assay and the cytokinesis-block micronucleus assay. The nonfunctionalized and carboxymethylated NFCs were able to increase intracellular reactive oxygen species (ROS) formation (chloromethyl derivative of 2',7'-dichlorodihydrofluorescein diacetate assay). However, ROS induction did not result in increased DNA or chromosome damage.

7.
Nanotoxicology ; 15(1): 96-113, 2021 02.
Article in English | MEDLINE | ID: mdl-33176111

ABSTRACT

Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred.


Subject(s)
Copper/toxicity , Nanoparticles/toxicity , Pneumonia/chemically induced , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , Acute-Phase Reaction , Animals , Comet Assay , Copper/chemistry , DNA Damage , Mice , Micronucleus Tests , Nanoparticles/chemistry , Nanostructures , Pilot Projects , Pneumonia/pathology , Porosity
8.
Article in English | MEDLINE | ID: mdl-32928365

ABSTRACT

We studied the genotoxicity and cellular uptake of nanosized (<50 nm) and fine (<10 µm) copper oxide (CuO) particles in vitro in human bronchial epithelial (BEAS-2B) cells. In addition, the effect of dispersing the particles using bovine serum albumin (BSA) on DNA damage induction was investigated. DNA damage was assessed by the alkaline comet (single cell gel electrophoresis) assay after 3-h, 6-h and 24-h exposures. The cytokinesis-block micronucleus assay was applied to study chromosome damage. Both fine- and nanosized CuO particles induced a dose-dependent increase in DNA damage at all timepoints tested. However, nanosized CuO damaged DNA at lower doses and higher levels compared with fine CuO. Dispersing the nanoparticles in the presence of BSA (0.6 mg/mL) resulted in a small and inconsistent decrease in DNA damage compared with dispersions in serum-free cell culture medium only. CuO nanoparticles induced a clear dose-dependent increase in micronucleated cells at doses that strongly increased cytostasis and were markedly cytotoxic at 24 and 48 h. Fine CuO showed a slight induction of micronuclei. Hyperspectral microscopy indicated a substantial cellular uptake of both types of particles after a 3-h exposure to a dose of 20 µg/cm2. The number of particles internalized by the cells was higher for nanosized than fine CuO, as quantified by the frequency of spectral matches in the total cell area and by the number of spectrally matched visible particles or agglomerates per cell. The particle uptake was limited by particle size. The stronger genotoxic activity of nanosized than fine CuO particles is likely to derive from the higher cellular uptake and more effective intracellular dissolution of nanoparticles.


Subject(s)
Bronchi/drug effects , Copper/pharmacology , DNA Damage/drug effects , Epithelial Cells/drug effects , Cell Line , Cell Survival/drug effects , Copper/chemistry , Humans , Metal Nanoparticles/chemistry , Mutagens/chemistry , Mutagens/pharmacology , Particle Size , Single-Cell Analysis
9.
Nanomaterials (Basel) ; 10(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041143

ABSTRACT

Several studies suggested that gold nanoparticles (NPs) could be genotoxic in vitro and in vivo. However, gold NPs currently produced present a wide range of sizes and functionalization, which could affect their interactions with the environment or with biological structures and, thus, modify their toxic effects. In this study, we investigated the role of surface charge in determining the genotoxic potential of gold NPs, as measured by the induction of DNA damage (comet assay) and chromosomal damage (micronucleus assay) in human bronchial epithelial BEAS-2B cells. The cellular uptake of gold NPs was assessed by hyperspectral imaging. Two core sizes (~5 nm and ~20 nm) and three functionalizations representing negative (carboxylate), positive (ammonium), and neutral (poly(ethylene glycol) (PEG)ylated) surface charges were examined. Cationic ammonium gold NPs were clearly more cytotoxic than their anionic and neutral counterparts, but genotoxicity was not simply dependent on functionalization or size, since DNA damage was induced by 20-nm ammonium and PEGylated gold NPs, while micronucleus induction was increased by 5-nm ammonium and 20-nm PEGylated gold NPs. The 5-nm carboxylated gold NPs were not genotoxic, and evidence on the genotoxicity of the 20-nm carboxylated gold NPs was restricted to a positive result at the lowest dose in the micronucleus assay. When interpreting the results, it has to be taken into account that cytotoxicity limited the doses available for the ammonium-functionalized gold NPs and that gold NPs were earlier described to interfere with the comet assay procedure, possibly resulting in a false positive result. In conclusion, our findings show that the cellular uptake and cytotoxicity of gold NPs are clearly enhanced by positive surface charge, but neither functionalization nor size can single-handedly account for the genotoxic effects of the gold NPs.

10.
Environ Toxicol Pharmacol ; 66: 116-125, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30665014

ABSTRACT

We studied if the pulmonary and systemic toxicity of nanofibrillated celluloses can be reduced by carboxylation. Nanofibrillated celluloses administered at 6 or 18 µg to mice by intratracheal instillation were: 1) FINE NFC, 2-20 µm in length, 2-15 nm in width, 2) AS (-COOH), carboxylated, 0.5-10 µm in length, 4-10 nm in width, containing the biocide BIM MC4901 and 3) BIOCID FINE NFC: as (1) but containing BIM MC4901. FINE NFC administration increased neutrophil influx in BAL and induced SAA3 in plasma. AS (-COOH) produced lower neutrophil influx and systemic SAA3 levels than FINE NFC. Results obtained with BIOCID FINE NFC suggested that BIM MC4901 biocide did not explain the lowered response. Increased DNA damage levels were observed across materials, doses and time points. In conclusion, carboxylation of nanofibrillated cellulose was associated with reduced pulmonary and systemic toxicity, suggesting involvement of OH groups in the inflammatory and acute phase responses.


Subject(s)
Acute-Phase Reaction/chemically induced , Carboxylic Acids/chemistry , Cellulose/toxicity , Disinfectants/toxicity , Lung/drug effects , Nanofibers/toxicity , Animals , Bronchoalveolar Lavage Fluid/cytology , Cell Count , Cellulose/chemistry , DNA Damage , Female , Inflammation/chemically induced , Inflammation/pathology , Lung/pathology , Mice, Inbred C57BL , Nanofibers/chemistry
11.
Nanotoxicology ; 13(3): 305-325, 2019 04.
Article in English | MEDLINE | ID: mdl-30582398

ABSTRACT

Nanoceria has a broad variety of industrial and pharmacological applications due to its antioxidant activity. Nanoceria can be modified by surface coating with polyelectrolyte brushes. Brushes can increase the surface charge of nanoceria, providing greater aqueous stability while reducing agglomeration. However, surface-coating also behaves as a barrier around nanoceria, affecting its redox equilibrium and, hence, its biological and toxicological properties. In the present study, we examined whether bare nanoceria (CeO2; 80-150 nm) and nanoceria modified by surface polymer brush, using negatively charged polyacrylic acid (CeO2@PAA) and positively charged poly (2-(methacryloyloxy)ethyl-trimethyl-ammonium chloride (CeO2@PMETAC), could induce systemic toxicity. As CeO2 has limited colloidal stability, which might result in vascular occlusion, intraperitoneal injection was used instead of intravenous administration. C57Bl/6 mice were four times injected with three different doses of each nanoceria-based sample (corresponding to 1.8, 5.3 and 16 mg Ce/kg BW/administration) for a total period of 14 days. CeO2@PMETAC induced a significant dose-dependent neutrophilia. Histopathological evaluation showed inflammatory processes in the capsule of liver, kidney, and spleen of animals at all doses of CeO2@PMETAC, and with the highest dose of CeO2@PAA and CeO2. However, none of the nanoceria-based samples tested increased the level of DNA damage or micronuclei in blood cells, even though Ce was detected by inductively coupled plasma mass spectrometry analyses in the bone marrow. Only CeO2@PMETAC induced the presence of megakaryocytes in the spleen. A higher accumulation of Ce in mononuclear phagocyte system organs (liver, spleen and bone marrow) was observed after CeO2@PMETAC treatment compared with CeO2@PAA and CeO2.


Subject(s)
Acrylic Resins/chemistry , Cerium/toxicity , Nanoparticles/toxicity , Polymethacrylic Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Viscera/drug effects , Animals , Cerium/chemistry , DNA Damage , Dose-Response Relationship, Drug , Female , Injections, Intraperitoneal , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Organ Specificity , Particle Size , Surface Properties , Thermogravimetry , Viscera/pathology
12.
Nanotoxicology ; 12(7): 729-746, 2018 09.
Article in English | MEDLINE | ID: mdl-29848128

ABSTRACT

Nanofibrillated cellulose (NFC) is a renewable nanomaterial that has beneficial uses in various applications such as packaging materials and paper. Like carbon nanotubes (CNT), NFCs have high aspect ratio and favorable mechanical properties. The aspect ratio also rises a concern whether NFC could pose a health risk and induce pathologies, similar to those triggered by multi-walled CNT. In this study, we explored the immunomodulatory properties of four NFCs in vitro and in vivo, and compared the results with data on bulk-sized cellulose fibrils and rigid multi-walled CNT (rCNT). Two of the NFCs were non-functionalized and two were carboxymethylated or carboxylated. We investigated the production of pro-inflammatory cytokines in differentiated THP-1 cells, and studied the pulmonary effects and biopersistence of the materials in mice. Our results demonstrate that one of the non-functionalized NFCs tested reduced cell viability and triggered pro-inflammatory reactions in vitro. In contrast, all cellulose materials induced innate immunity response in vivo 24 h after oropharyngeal aspiration, and the non-functionalized NFCs additionally caused features of Th2-type inflammation. Modest immune reactions were also seen after 28 days, however, the effects were markedly attenuated as compared with the ones after 24 h. Cellulose materials were not cleared within 1 month, as demonstrated by their presence in the exposed lungs. All effects of NFC were modest as compared with those induced by rCNT. NFC-induced responses were similar or exceeded those triggered by bulk-sized cellulose. These data provide new information about the biodurability and pulmonary effects of different NFCs; this knowledge can be useful in the risk assessment of cellulose materials.


Subject(s)
Cellulose/toxicity , Lung/drug effects , Nanofibers/toxicity , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Acute Disease , Animals , Cell Survival/drug effects , Cell Survival/immunology , Cellulose/chemistry , Cytokines/metabolism , Female , Humans , Immunity, Innate/drug effects , Inhalation Exposure , Lung/immunology , Mice, Inbred C57BL , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Pneumonia/immunology , THP-1 Cells , Time Factors
13.
Bioengineering (Basel) ; 4(4)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29194367

ABSTRACT

Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

14.
Nanotoxicology ; 11(8): 964-977, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29046118

ABSTRACT

Several approaches have recently been proposed for predicting the potential hazard and risk to human health of engineered nanomaterials (NMs). Here, we present a theoretical approach to assess the mutagenic potential of NMs, which could be incorporated into risk assessment tools. Following the weight of evidence approach recommended for chemicals, we describe criteria for evaluating and weighting existing literature information, based on current knowledge on the relevance and limitations of genotoxicity and mutagenicity assays used in testing NMs. The relevant assays are then categorized according to the genotoxic events detected in three categories: DNA damage, gene mutations and chromosomal damage - the former weighing lower than the two latter ones, since unrepairable alterations have more weight than those depicting primary DNA damage that can still be repaired. Besides, evidence from in vivo tests are given a higher weight than data coming from in vitro tests, because animal studies can more accurately predict secondary genotoxicity. Although studies conducted according to validated protocols have greater weight, studies that do not comply with conventional test guidelines are also considered, trying to make use of all available information for each NM. A threshold of agreement among studies belonging to the same category is required to consider this category positive or negative for mutagenicity. The final outcome is a statement on the mutagenic potential of the nanoform and the uncertainty of this evaluation. Finally, we discuss new methods and possible improvements in current assays that could be incorporated in future guidelines.


Subject(s)
DNA Damage , Models, Theoretical , Mutagenesis/drug effects , Mutagenicity Tests/methods , Mutagens/toxicity , Nanostructures/toxicity , Animals , Humans , Risk Assessment
15.
Mutagenesis ; 32(1): 23-31, 2017 01.
Article in English | MEDLINE | ID: mdl-27470699

ABSTRACT

Nanofibrillated cellulose (NFC) is a sustainable and renewable nanomaterial, with diverse potential applications in the paper and medical industries. As NFC consists of long fibres of high aspect ratio, we examined here whether TEMPO-(2,2,6,6-tetramethyl-piperidin-1-oxyl) oxidised NFC (length 300-1000nm, thickness 10-25nm), administrated by a single pharyngeal aspiration, could be genotoxic to mice, locally in the lungs or systemically in the bone marrow. Female C57Bl/6 mice were treated with four different doses of NFC (10, 40, 80 and 200 µg/mouse), and samples were collected 24h later. DNA damage was assessed by the comet assay in bronchoalveolar lavage (BAL) and lung cells, and chromosome damage by the bone marrow erythrocyte micronucleus assay. Inflammation was evaluated by BAL cell counts and analysis of cytokines and histopathological alterations in the lungs. A significant induction of DNA damage was observed at the two lower doses of NFC in lung cells, whereas no increase was seen in BAL cells. No effect was detected in the bone marrow micronucleus assay, either. NFC increased the recruitment of inflammatory cells to the lungs, together with a dose-dependent increase in mRNA expression of tumour necrosis factor α, interleukins 1ß and 6, and chemokine (C-X-C motif) ligand 5, although there was no effect on the levels of the respective proteins. The histological analysis showed a dose-related accumulation of NFC in the bronchi, the alveoli and some in the cytoplasm of macrophages. In addition, neutrophilic accumulation in the alveolar lung space was observed with increasing dose. Our findings showed that NFC administered by pharyngeal aspiration caused an acute inflammatory response and DNA damage in the lungs, but no systemic genotoxic effect in the bone marrow. The present experimental design did not, however, allow us to determine whether the responses were transient or could persist for a longer time.


Subject(s)
Bone Marrow Cells/drug effects , Cellulose/toxicity , DNA Damage , Lung/drug effects , Nanofibers/toxicity , Animals , Bone Marrow Cells/metabolism , Cellulose/pharmacology , Comet Assay , Cytokines , DNA/drug effects , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Inflammation , Lung/metabolism , Macrophages/drug effects , Mice , Micronuclei, Chromosome-Defective , Micronucleus Tests , Nanofibers/chemistry
16.
Article in English | MEDLINE | ID: mdl-27402478

ABSTRACT

Data available on the genotoxicity of zinc oxide (ZnO) nanoparticles (NPs) are controversial. Here, we examined the effects of particle size and dispersion status on the cytotoxicity and genotoxicity of nanosized and fine ZnO, in the presence and absence of bovine serum albumin (BSA; 0.06%) in human bronchial epithelial BEAS-2B cells. Dynamic light scattering analysis showed the most homogenous dispersions in water alone for nanosized ZnO and in water with BSA for fine ZnO. After a 48-h treatment, both types of ZnO were cytotoxic within a similar, narrow dose range (1.5-3.0µg/cm(2)) and induced micronuclei at a near toxic dose range (1.25-1.75µg/cm(2)), both with and without BSA. In the comet assay, nanosized ZnO (1.25-1.5µg/cm(2)), in the absence of BSA, caused a statistically significant increase in DNA damage after 3-h and 6-h treatments, while fine ZnO did not. Our findings may be explained by better uptake or faster intracellular dissolution of nanosized ZnO without BSA during short treatments (3-6h; the comet assay), with less differences between the two ZnO forms after longer treatments (>48h; the in vitro micronucleus test). As ZnO is genotoxic within a narrow dose range partly overlapping with cytotoxic doses, small experimental differences e.g. in the dispersion of ZnO particles may have a substantial effect on the genotoxicity of the nominal doses added to the cell culture.


Subject(s)
Bronchi/cytology , Epithelial Cells/drug effects , Metal Nanoparticles/chemistry , Zinc Oxide/toxicity , Animals , Cattle , Cell Line , Comet Assay , DNA Damage/drug effects , Humans , Micronucleus Tests , Particle Size , Serum Albumin, Bovine/chemistry
17.
Biomarkers ; 21(8): 721-730, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27121198

ABSTRACT

Biomonitoring methods were applied to workers exposed to high levels of chloronitrobenzenes. The external dose, internal dose, biologically effective dose, and biological effects were determined. Individual susceptibility was assessed by analyzing genetic polymorphisms of glutathione S-transferases M1, P1 and T1, and N-acetyltransferases 1 and 2. When the markers of exposure and susceptibility were compared with the frequency of chromosomal aberrations, clinical blood and urine parameters, and health effects typical of chloronitrobenzenes exposure, only a few of the comparisons were statistically significant. A statistically significantly higher frequency of chromosomal aberrations was detected in workers with a high level of hemoglobin-adducts.

18.
Nanotoxicology ; 10(6): 794-806, 2016 08.
Article in English | MEDLINE | ID: mdl-26674712

ABSTRACT

Some multi-walled carbon nanotubes (MWCNTs) induce mesothelioma in rodents, straight MWCNTs showing a more pronounced effect than tangled MWCNTs. As primary and secondary genotoxicity may play a role in MWCNT carcinogenesis, we used a battery of assays for DNA damage and micronuclei to compare the genotoxicity of straight (MWCNT-S) and tangled MWCNTs (MWCNT-T) in vitro (primary genotoxicity) and in vivo (primary or secondary genotoxicity). C57Bl/6 mice showed a dose-dependent increase in DNA strand breaks, as measured by the comet assay, in lung cells 24 h after a single pharyngeal aspiration of MWCNT-S (1-200 µg/mouse). An increase was also observed for DNA strand breaks in lung and bronchoalveolar lavage (BAL) cells and for micronucleated alveolar type II cells in mice exposed to aerosolized MWCNT-S (8.2-10.8 mg/m(3)) for 4 d, 4 h/d. No systemic genotoxic effects, assessed by the γ-H2AX assay in blood mononuclear leukocytes or by micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow or blood, were observed for MWCNT-S by either exposure technique. MWCNT-T showed a dose-related decrease in DNA damage in BAL and lung cells of mice after a single pharyngeal aspiration (1-200 µg/mouse) and in MNPCEs after inhalation exposure (17.5 mg/m(3)). In vitro in human bronchial epithelial BEAS-2B cells, MWCNT-S induced DNA strand breaks at low doses (5 and 10 µg/cm(2)), while MWCNT-T increased strand breakage only at 200 µg/cm(2). Neither of the MWCNTs was able to induce micronuclei in vitro. Our findings suggest that both primary and secondary mechanisms may be involved in the genotoxicity of straight MWCNTs.


Subject(s)
DNA Damage , Epithelial Cells/drug effects , Inhalation Exposure/analysis , Lung/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Nanotubes, Carbon/toxicity , Animals , Cell Line , Comet Assay , Epithelial Cells/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Humans , Lung/metabolism , Mice , Mice, Inbred C57BL , Micronucleus Tests
19.
Chem Res Toxicol ; 28(8): 1627-35, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26208679

ABSTRACT

Nanofibrillar cellulose is a very promising innovation with diverse potential applications including high quality paper, coatings, and drug delivery carriers. The production of nanofibrillar cellulose on an industrial scale may lead to increased exposure to nanofibrillar cellulose both in the working environment and the general environment. Assessment of the potential health effects following exposure to nanofibrillar cellulose is therefore required. However, as nanofibrillar cellulose primarily consists of glucose moieties, detection of nanofibrillar cellulose in biological tissues is difficult. We have developed a simple and robust method for specific and sensitive detection of cellulose fibers, including nanofibrillar cellulose, in biological tissue, using a biotinylated carbohydrate binding module (CBM) of ß-1,4-glycanase (EXG:CBM) from the bacterium Cellulomonas fimi. EXG:CBM was expressed in Eschericia coli, purified, and biotinylated. EXG:CBM was shown to bind quantitatively to five different cellulose fibers including four different nanofibrillar celluloses. Biotinylated EXG:CBM was used to visualize cellulose fibers by either fluorescence- or horse radish peroxidase (HRP)-tagged avidin labeling. The HRP-EXG:CBM complex was used to visualize cellulose fibers in both cryopreserved and paraffin embedded lung tissue from mice dosed by pharyngeal aspiration with 10-200 µg/mouse. Detection was shown to be highly specific, and the assay appeared very robust. The present method represents a novel concept for the design of simple, robust, and highly specific detection methods for the detection of nanomaterials, which are otherwise difficult to visualize.


Subject(s)
Cellulose/metabolism , Cellulose/ultrastructure , Glycoside Hydrolases/metabolism , Nanofibers/ultrastructure , Staining and Labeling/methods , Animals , Biotinylation , Glycoside Hydrolases/chemistry , Immunohistochemistry , Lung/cytology , Mice , Protein Binding
20.
Nanotoxicology ; 9(5): 624-35, 2015.
Article in English | MEDLINE | ID: mdl-25831214

ABSTRACT

Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in twenty-first century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their modes of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (Mitsui MWCNT-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP↓) was observed for MWCNTs at a biologically relevant dose (0.25 µg/cm(2)) and for asbestos at 2 µg/cm(2), but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature (including 26 genes with known mitochondrial function) related to MWCNT- and asbestos-induced MMP↓. Forty-nine of the MMP↓-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were correlated with MMP↓ and one of them, miR-1275, was found to negatively correlate with a large part of the MMP↓-associated genes. Cellular processes such as gluconeogenesis, mitochondrial LC-fatty acid ß-oxidation and spindle microtubule function were enriched among the MMP↓-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.


Subject(s)
Asbestos/toxicity , Membrane Potential, Mitochondrial/drug effects , MicroRNAs/genetics , Nanotubes, Carbon/toxicity , Respiratory Mucosa/drug effects , Transcriptome/drug effects , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Profiling , Humans , Inhalation Exposure , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...