Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Horiz ; 9(11): 2773-2784, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36069965

ABSTRACT

Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.


Subject(s)
Film Dosimetry , Ultraviolet Rays , Gamma Rays , X-Rays
2.
Chem Commun (Camb) ; 54(53): 7326-7329, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29911228

ABSTRACT

A microwave-assisted structure-conversion (MASC) method was used to obtain photochromic hackmanites (M,Na)8Al6Si6O24(Cl,S)2 (M: Li, Na, and K) in a fast (12 to 20 min) one-step process. Structural conversion from Zeolite A to hackmanite minerals has been proven to be very effective through an aluminosilicate crystalline intermediate. Photochromism is observed with both UV and X-ray (CuKα) excitation.

3.
ACS Appl Mater Interfaces ; 8(18): 11592-602, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27088662

ABSTRACT

Synthetic hackmanites, Na8Al6Si6O24(Cl,S)2, showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti(3+) originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na4(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time.

4.
Inorg Chem ; 54(16): 7717-24, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26247100

ABSTRACT

Na8Al6Si6O24(Cl,S)2 materials were prepared with a solid state reaction. The products were studied using X-ray powder diffraction, reflectance measurements as well as X-ray fluorescence, conventional and persistent luminescence, nuclear magnetic resonance, and electron paramagnetic resonance spectroscopies. All materials containing sulfur showed purple tenebrescence, which persisted 2 days in a lit room at room temperature. Considerable blue persistent luminescence peaking at 460 nm and lasting for 1 h was obtained, as well. Persistent luminescence was obtained with irradiation at 365 nm, while tenebrescence required 254 nm. The materials show great promise as low-cost multifunctional optical markers.

SELECTION OF CITATIONS
SEARCH DETAIL