Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sports Med ; 54(3): 541-556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38175461

ABSTRACT

BACKGROUND: Flywheel resistance training has become more integrated within resistance training programs in a variety of sports due to the neuromuscular, strength, and task-specific enhancements reported with this training. OBJECTIVE: This paper aimed to present the consensus reached by internationally recognized experts during a meeting on current definitions and guidelines for the implementation of flywheel resistance training technology in sports. METHODS: Nineteen experts from different countries took part in the consensus process; 16 of them were present at the consensus meeting (18 May 2023) while three submitted their recommendations by e-mail. Prior to the meeting, evidence summaries were developed relating to areas of priority. This paper discusses the available evidence and consensus process from which recommendations were made regarding the appropriate use of flywheel resistance training technology in sports. The process to gain consensus had five steps: (1) performing a systematic review of systematic reviews, (2) updating the most recent umbrella review published on this topic, (3) first round discussion among a sample of the research group included in this consensus statement, (4) selection of research group members-process of the consensus meeting and formulation of the recommendations, and (5) the consensus process. The systematic analysis of the literature was performed to select the most up-to-date review papers available on the topic, which resulted in nine articles; their methodological quality was assessed according to AMSTAR 2 (Assessing the Methodological Quality of Systematic Review 2) and GRADE (Grading Recommendations Assessment Development and Evaluation). Statements and recommendations scoring 7-9 were considered appropriate. RESULTS: The recommendations were based on the evidence summary and researchers' expertise; the consensus statement included three statements and seven recommendations for the use of flywheel resistance training technology. These statements and recommendations were anonymously voted on and qualitatively analyzed. The three statements reported a score ranging from 8.1 to 8.8, and therefore, all statements included in this consensus were considered appropriate. The recommendations (1-7) had a score ranging from 7.7 to 8.6, and therefore, all recommendations were considered appropriate. CONCLUSIONS: Because of the consensus achieved among the experts in this project, it is suggested that practitioners and researchers should adopt the guidelines reported in this consensus statement regarding the use of flywheel resistance technology in sports.


Subject(s)
Resistance Training , Humans , Systematic Reviews as Topic , Consensus
2.
Mil Med ; 188(9-10): e3118-e3126, 2023 08 29.
Article in English | MEDLINE | ID: mdl-36994839

ABSTRACT

INTRODUCTION: For tactical reasons, the foot-borne soldiers sometimes undertake nighttime operations. However, the metabolic demand during walking in complete darkness may be markedly increased. The purpose of this study was to investigate if metabolic demand and kinematics would change while walking on a gravel road and a slightly hilly trail in darkness with or without visual aid. MATERIALS AND METHODS: Fourteen cadets (11 men and 3 women, age: 25 ± 7 years, height: 178 ± 8 cm, and weight: 78 ± 13 kg) walked at 4 km/h on a straight gravel road and on a slightly hilly forest trail (n = 9). Both trials were performed at nighttime under four different conditions, wearing a headlamp (Light), blindfold (Dark), monocular (Mono), or binocular (Bino) night vision goggles. During the 10-minute walks, oxygen uptake, heart rate, and kinematic data were assessed. Ratings of perceived exertion, discomfort, and mental stress were evaluated after each condition using a category ratio scale. Physiologic and kinematic variables were evaluated using repeated-measures analysis of variance, whereas ratings were evaluated using non-parametric Friedman analysis of variance. RESULTS: Oxygen uptake was higher in all three conditions with no or limited vision (Dark, Mono, and Bino) than in the Light condition (P ≤ 0.02) when walking on both the gravel road (+5-8%) and the forest trail (+6-14%). Heart rate was higher during the Dark than during the Light condition when walking on the forest trail, whereas there was no difference between conditions on the gravel road. During both trials, gait frequency was higher during the Dark than during the Light, Mono, and Bino conditions. Ratings were generally low during all conditions. CONCLUSIONS: Walking on a gravel road or a forest trail wearing a blindfold or visual aid increased the metabolic demand. Thus, it appears that the metabolic demand is higher during overground walking with night vision goggles than with full vision, which may influence the performance of nighttime operations.


Subject(s)
Gait , Walking , Male , Humans , Female , Adolescent , Young Adult , Adult , Darkness , Walking/physiology , Gait/physiology , Night Vision , Oxygen
3.
Sports Biomech ; 22(6): 767-783, 2023 Jun.
Article in English | MEDLINE | ID: mdl-32500840

ABSTRACT

Resistance exercise on Earth commonly involves both body weight and external load. When developing exercise routines and devices for use in space, the absence of body weight is not always adequately considered. This study compared musculoskeletal load distribution during two flywheel resistance knee-extension exercises, performed in the direction of (vertical squat; S) or perpendicular to (horizontal leg press; LP) the gravity vector. Eleven participants performed these two exercises at a given submaximal load. Motion analysis and musculoskeletal modelling were used to compute joint loads and to simulate a weightless situation. The flywheel load was more than twice as high in LP as in S (p < 0.001). Joint moments and forces were greater during LP than during S in the ankle, hip and lower back (p < 0.01) but were similar in the knee. In the simulated weightless situation, hip and lower-back loadings in S were higher than corresponding values at Earth gravity (p ≤ 0.01), whereas LP joint loads did not increase. The results suggest that LP is a better terrestrial analogue than S for knee-extension exercise in weightlessness and that the magnitude and direction of gravity during resistance exercise should be considered when designing and evaluating countermeasure exercise routines and devices for space.


Subject(s)
Leg , Weightlessness , Humans , Biomechanical Phenomena , Exercise , Posture , Muscle, Skeletal
4.
J Strength Cond Res ; 37(1): 27-34, 2023 01 01.
Article in English | MEDLINE | ID: mdl-34743146

ABSTRACT

ABSTRACT: Sjöberg, M, Eiken, O, Norrbrand, L, Berg, HE, and Gutierrez-Farewik, EM. Lumbar loads and muscle activity during flywheel and barbell leg exercises. J Strength Cond Res 37(1): 27-34, 2023-It is anticipated that flywheel-based leg resistance exercise will be implemented in future long-duration space missions, to counter deconditioning of weight-bearing bones and postural muscles. The aim was to examine low back loads and muscle engagements during flywheel leg press (FWLP) and flywheel squat (FWS) and, for comparisons, free-weight barbell back squat (BBS). Eight resistance-trained subjects performed 8 repetition maximums of FWLP, FWS, and BBS. Motion analysis and inverse dynamics-based musculoskeletal modeling were used to compute joint loads and muscle forces. Muscle activities were measured with electromyography (EMG). At the L4-L5 level, peak vertebral compression force was similarly high in all exercise modes, whereas peak vertebral posteroanterior shear force was greater ( p < 0.05) in FWLP and BBS than in FWS. Among the back-extensor muscles, the erector spinae longissimus exerted the greatest peak force, with no difference between exercises. Peak force in the lumbar multifidus was lower ( p < 0.05) during FWLP than during FWS and BBS. Peak EMG activity in the lumbar extensor muscles ranged between 31 and 122% of maximal voluntary isometric contraction across muscles and exercise modes, with the greatest levels in the lumbar multifidus. The vertebral compression forces and muscle activations during the flywheel exercises were sufficiently high to presume that when implementing such exercise in space countermeasure regimens, they may be capable of preventing muscle atrophy and vertebral demineralization in the lumbar region.


Subject(s)
Leg , Lumbosacral Region , Humans , Isometric Contraction/physiology , Weight Lifting/physiology , Electromyography , Muscle, Skeletal/physiology , Paraspinal Muscles
5.
Mil Med ; 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36331591

ABSTRACT

INTRODUCTION: Uniformed services commonly perform foot-borne operations at night, while using visual aid in terms of night vision goggles (NVG). During slow-level walking, complete lack of visual input alters kinematics and markedly increases the metabolic demand, whereas the effect on kinematics and energy expenditure of restricting the peripheral visual field by wearing NVG is still unknown. The purpose was to evaluate whether metabolic demands and kinematics during level walking are affected by complete darkness with and without visual aid. MATERIALS AND METHODS: Eleven healthy men walked on a treadmill (inclination: +2.3°, velocity: 4 km/h) with full vision in a lighted laboratory (Light), and in complete darkness wearing either a blindfold (Dark), or restricting the visual field to about 40° by wearing monocular (Mono) or binocular (Bino) NVG. Oxygen uptake ($\dot{\text{V}}$O2) was measured to evaluate metabolic demands. Inertial measurement units were used to estimate kinematics, and the outcome was validated by using a motion capture system. Ratings of perceived exertion, discomfort, and mental stress were evaluated after each condition using a Borg ratio scale. Physiologic and kinematic variables were evaluated using repeated measures analysis of variance (ANOVA), whereas ratings were evaluated using non-parametric Friedman ANOVA. RESULTS: $\dot{\text{V}}$ O2 was 20% higher in the Dark (1.2 ± 0.2 L/min) than the Light (1.0 ± 0.2 L/min) condition. Nominally, $\dot{\text{V}}$O2 in the Mono (1.1 ± 0.2 L/min) and Bino (1.1 ± 0.2 L/min) conditions fell in between those in the Light and Dark conditions but was not statistically different from either the Light or the Dark condition. Step length was shorter in the Dark (-9%, 1.22 ± 0.16 m) and Mono (-6%, 1.27 ± 0.09 m) conditions than in the Light condition (1.35 ± 0.11 m), whereas the Bino (1.28 ± 0.08 m) condition was not statistically different from either the Light or the Dark condition. The three conditions with no or limited vision were perceived more physically demanding, more uncomfortable, and more mentally stressful than the Light condition, and the Dark condition was perceived more mentally stressful than both NVG conditions. CONCLUSIONS: The study confirms that complete lack of visual cues markedly reduces the mechanical efficiency during level walking, even under obstacle-free and highly predictable conditions. That $\dot{\text{V}}$O2 and step length values for the NVG conditions fell in between those of the Light and Dark conditions suggest that both foveal and peripheral vision may play important roles in optimizing the mechanical efficiency during level walking.

6.
J Appl Physiol (1985) ; 131(3): 1035-1042, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34351816

ABSTRACT

Mitochondrial-derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis, and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n = 10, 45 min cycling at 70% of estimated V̇O2max), RE (n = 10, 4 sets × 7RM, leg press and knee extension), or control (CON, n = 10). Skeletal muscle biopsies and blood samples were collected before and at 30 min and 3 h following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise-related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total, and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes [V̇O2max, leg strength, or muscle mitochondrial (mt) DNA copy number]. Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.NEW & NOTEWORTHY In this manuscript, we report for the first time, to our knowledge, the response of circulating levels of mitochondrial-derived peptides humanin and MOTS-c to acute resistance and endurance exercise. Our data support that acute endurance exercise stimulates MDP levels in plasma, whereas acute resistance exercise does not.


Subject(s)
Mitochondria , Peptides , Exercise , Humans , Muscle, Skeletal/metabolism , Transcription Factors/metabolism
7.
Front Sports Act Living ; 3: 686335, 2021.
Article in English | MEDLINE | ID: mdl-34423289

ABSTRACT

The aim was to compare the musculoskeletal load distribution and muscle activity in two types of maximal flywheel leg-extension resistance exercises: horizontal leg press, during which the entire load is external, and squat, during which part of the load comprises the body weight. Nine healthy adult habitually strength-training individuals were investigated. Motion analysis and inverse dynamics-based musculoskeletal modelling were used to compute joint loads, muscle forces, and muscle activities. Total exercise load (resultant ground reaction force; rGRF) and the knee-extension net joint moment (NJM) were slightly and considerably greater, respectively, in squat than in leg press (p ≤ 0.04), whereas the hip-extension NJM was moderately greater in leg press than in squat (p = 0.03). Leg press was performed at 11° deeper knee-flexion angle than squat (p = 0.01). Quadriceps muscle activity was similar in squat and leg press. Both exercise modalities showed slightly to moderately greater force in the vastii muscles during the eccentric than concentric phase of a repetition (p ≤ 0.05), indicating eccentric overload. That the quadriceps muscle activity was similar in squat and leg press, while rGRF and NJM about the knee were greater in squat than leg press, may, together with the finding of a propensity to perform leg press at deeper knee angle than squat, suggest that leg press is the preferable leg-extension resistance exercise, both from a training efficacy and injury risk perspective.

8.
Appl Ergon ; 82: 102964, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31604187

ABSTRACT

The purpose was to evaluate whether a cold-water immersion test could be used to identify individuals susceptible to local cold injuries (LCI). Sixty-five healthy non-injured (N-I) subjects, and fifteen subjects, who were tested either prior to or after a LCI, sequentially immersed one hand and one foot, in 8 °C water for 30 min (CWI phase); this was followed by 15 min of spontaneous rewarming (RW phase). The LCI group showed a lower toe temperature during the CWI phase, and a lower maximum RW temperature of the fingers than the N-I group. However, digit temperatures during the CWI and RW phases exhibited low predictive values for LCI, e.g. results implied that to identify 80% of the LCI subjects, 34-78% of the N-I subjects would also be excluded. Thus, the results suggest that, in practice, hand or foot cold-water immersion tests cannot be used to identify individuals at high risk of LCI.


Subject(s)
Cold Injury/diagnosis , Cold Injury/prevention & control , Fingers/blood supply , Military Personnel , Toes/blood supply , Cold Temperature , Female , Humans , Immersion , Male , Predictive Value of Tests , Protective Clothing , Rewarming , Risk Factors , Skin Temperature , Sweden , Young Adult
9.
J Biomech ; 87: 206-210, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30905404

ABSTRACT

The study compared the centre of pressure measurements (COP) and vertical ground reaction forces (vGRF) from a pressure insole system to that from force plates (FP) during two flywheel quadriceps resistance exercises: leg press and squat. The comparison was performed using a motion capture system and simultaneous measurements of COP and vGRF from FP and insoles. At lower insole-vGRF (<250 N/insole) COP accuracy deteriorated and those data were excluded from further analysis. The insoles systematically displaced the COP slightly posteriorly and medially compared to the FP measurements. Pearson's coefficient of correlation (r) between insole- and FP-COP showed good agreement in both the anteroposterior (squat: r = 0.96, leg press: r = 0.97) and mediolateral direction (squat: r = 0.84, leg press: r = 0.90), whereas the root-mean-square errors (RMSE) were lower in the mediolateral (squat: 3.9 mm, leg press: 4.5 mm) than the anteroposterior (squat and leg press: 11.8 mm) direction. Vertical GRF was slightly overestimated by the insoles in leg press and RMSE were greater in leg press (8% of peak force) than in squat (6%). Overall, results were within the range of previous studies performed on gait. The strong agreement between insole and FP measurements indicates that insoles may replace FPs in field applications and biomechanical computations during resistance exercise, provided that the applied force is sufficient.


Subject(s)
Biophysics/instrumentation , Foot Orthoses/standards , Foot/physiology , Resistance Training , Adult , Biomechanical Phenomena , Exercise , Gait , Humans , Male , Posture , Pressure , Shoes
10.
Chronobiol Int ; 35(10): 1464-1470, 2018 09.
Article in English | MEDLINE | ID: mdl-29985669

ABSTRACT

The purpose of the study was to evaluate the recuperative efficacy of pre-exercise napping on physical capacity after military sustained operations (SUSOPS) with partial sleep deprivation. Before and after a 2-day SUSOPS, 61 cadets completed a battery of questionnaires, and performed a 2-min lunges trial and a 3,000-m running time-trial. After the completion of SUSOPS, subjects were randomized to either a control [without pre-exercise nap (CON); n = 32] or a nap [with a 30-min pre-exercise nap (NAP); n = 29] group. SUSOPS enhanced perceived sleepiness and degraded mood in both groups. Following SUSOPS, the repetitions of lunges, in the CON group, were reduced by ~ 2.3%, albeit the difference was not statistically significant (p = 0.62). In the NAP group, however, the repetitions of lunges were increased by ~ 7.1% (p = 0.01). SUSOPS impaired the 3,000-m running performance in the CON group (~ 2.3%; p = 0.02), but not in the NAP group (0.3%; p = 0.71). Present results indicate, therefore, that a relatively brief pre-exercise nap may mitigate physical performance impairments ensued by short-term SUSOPS.


Subject(s)
Circadian Rhythm , Physical Functional Performance , Sleep , Task Performance and Analysis , Adult , Fatigue , Female , Humans , Male , Young Adult
11.
Eur J Appl Physiol ; 117(6): 1141-1153, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28421275

ABSTRACT

PURPOSE: The purpose was to examine whether associations exist between temperature responses in the fingers vs. toes and hand vs. foot during local cold-water immersion and rewarming phases. METHODS: Seventy healthy subjects (58 males, 12 females) immersed their right hand or right foot, respectively, in 8 °C water for 30 min (CWI phase), followed by a 15-min spontaneous rewarming (RW) in 25 °C air temperature. RESULTS: Temperature was lower in the toes than the fingers during the baseline phase (27.8 ± 3.0 vs. 33.9 ± 2.5 °C, p < 0.001), parts of the CWI phase (min 20-30: 8.8 ± 0.7 vs. 9.7 ± 1.4 °C, p < 0.001), and during the RW phase (peak temperature: 22.5 ± 5.1 vs. 32.7 ± 3.6 °C, p < 0.001). Cold-induced vasodilatation (CIVD) was more common in the fingers than in the toes (p < 0.001). Within the first 10 min of CWI, 61% of the subjects exhibited a CIVD response in the fingers, while only 6% of the subjects had a CIVD response in the toes. There was a large variability of temperature responses both within and between extremities, and there was a weak correlation between finger- and toe temperature both during the CWI (r = 0.21, p = 0.08) and the RW phases (r = 0.26, p = 0.03). CONCLUSIONS: Results suggest that there is generally a lower temperature in the toes than the fingers after a short time of local cold exposure and that the thermal responses of the fingers/hands are not readily transferable to the toes/foot.


Subject(s)
Body Temperature Regulation , Cold-Shock Response , Fingers/physiology , Skin Temperature , Toes/physiology , Vasodilation , Adult , Female , Fingers/blood supply , Humans , Immersion , Male , Toes/blood supply , Water
12.
Aerosp Med Hum Perform ; 87(7): 610-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27503040

ABSTRACT

INTRODUCTION: This study examined the effects of long-term bed rest with or without a concurrent resistance exercise protocol on different muscle function indices of the knee extensors and their influence on previously shown atrophy, neural impairment, and slow-to-fast phenotype shift. METHODS: Nine men underwent 90 d of bed rest only (BR), while eight men in addition performed maximal supine squats every third day (BRE). Before and at day 1 and 5 following bed rest, surface quadriceps electromyographic (EMG) activity was measured during a sustained (60-s) submaximal isometric action and rate of force development (RFD) was assessed during a maximal isometric action, both in the supine squat position. Maximal torque was measured during isokinetic knee extensions at different angular velocities before and after (day 2 and 11) bed rest. RESULTS: EMG amplitude at a fixed submaximal load increased in BR, but not in BRE. The increase in amplitude during the sustained action was elevated in BR but not in BRE. RFD decreased in BR; this effect was attenuated day 1 and normalized day 5 in BRE. RFD expressed relative to maximal force was maintained in both groups. Angle-specific torque decreased equally for all velocities in BR. The decrease in isokinetic strength was attenuated day 2 in BRE. DISCUSSION: Phenotype changes were not reflected in muscle function measurements, probably because they were overridden by the effects of atrophy and neural adaptation. The protective effect of resistance exercise was more pronounced in tasks similar to the training action, inferring great impact of neural mechanisms. Alkner BA, Norrbrand L, Tesch PA. Neuromuscular adaptations following 90 days bed rest with or without resistance exercise. Aerosp Med Hum Perform. 2016; 87(7):610-617.


Subject(s)
Adaptation, Physiological , Bed Rest , Quadriceps Muscle/physiology , Resistance Training , Adult , Electromyography , Humans , Isometric Contraction , Knee/physiology , Male
13.
Aviat Space Environ Med ; 82(1): 13-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21235100

ABSTRACT

BACKGROUND: Resistance exercise has been proposed as an aid to counteract quadriceps muscle atrophy in astronauts during extended missions in orbit. While space authorities have advocated the squat exercise should be prescribed, no exercise system suitable for in-flight use has been validated with regard to quadriceps muscle use. We compared muscle involvement in the terrestrial "gold standard" squat using free weights and a nongravity dependent flywheel resistance exercise device designed for use in space. METHODS: The subjects were 10 strength-trained men who performed 5 sets of 10 repetitions using the barbell squat (BS; 10 repetition maximum) or flywheel squat (FS; each repetition maximal), respectively. Functional magnetic resonance imaging (MRI) and surface electromyography (EMG) techniques assessed quadriceps muscle use. Exercise-induced contrast shift of MR images was measured by means of transverse relaxation time (T2). EMG root mean square (RMS) was measured during concentric (CON) and eccentric (ECC) actions and normalized to EMG RMS determined during maximal voluntary contraction. RESULTS: The quadriceps muscle group showed greater exercise-induced T2 increase following FS compared with BS. Among individual muscles, the rectus femoris displayed greater T2 increase with FS (+24 +/- 14%) than BS (+8 +/- 4%). Normalized quadriceps EMG showed no difference across exercise modes. DISCUSSION: Collectively, the results of this study suggest that quadriceps muscle use in the squat is comparable, if not greater, with flywheel compared with free weight resistance exercise. Data appear to provide support for use of flywheel squat resistance exercise as a countermeasures adjunct during spaceflight.


Subject(s)
Quadriceps Muscle/physiology , Resistance Training/methods , Adult , Electromyography , Humans , Magnetic Resonance Imaging , Male , Muscle Contraction/physiology
14.
Eur J Appl Physiol ; 110(5): 997-1005, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20676897

ABSTRACT

Changes in muscle activation and performance were studied in healthy men in response to 5 weeks of resistance training with or without "eccentric overload". Subjects, assigned to either weight stack (grp WS; n = 8) or iso-inertial "eccentric overload" flywheel (grp FW; n = 9) knee extensor resistance training, completed 12 sessions of four sets of seven concentric-eccentric actions. Pre- and post-measurements comprised maximal voluntary contraction (MVC), rate of force development (RFD) and training mode-specific force. Root mean square electromyographic (EMG(RMS)) activity of mm. vastus lateralis and medialis was assessed during MVC and used to normalize EMG(RMS) for training mode-specific concentric (EMG(CON)) and eccentric (EMG(ECC)) actions at 90°, 120° and 150° knee joint angles. Grp FW showed greater (p < 0.05) overall normalized angle-specific EMG(ECC) of vastii muscles compared with grp WS. Grp FW showed near maximal normalized EMG(CON) both pre- and post-training. EMG(CON) for Grp WS was near maximal only post-training. While RFD was unchanged following training (p > 0.05), MVC and training-specific strength increased (p < 0.05) in both groups. We believe the higher EMG(ECC) activity noted with FW exercise compared to standard weight lifting could be attributed to its unique iso-inertial loading features. Hence, the resulting greater mechanical stress may explain the robust muscle hypertrophy reported earlier in response to flywheel resistance training.


Subject(s)
Muscle Contraction/physiology , Resistance Training , Weight Lifting/physiology , Adaptation, Physiological , Adult , Electromyography , Humans , Knee/physiology , Male , Middle Aged , Muscle Strength , Muscle, Skeletal/physiology
15.
Eur J Appl Physiol ; 102(3): 271-81, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17926060

ABSTRACT

Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P < 0.05) at all angles measured in FW, such a change was less consistent in WS. There was a marked increase (P < 0.05) in task-specific performance (i.e., load lifted) in WS. Average work showed a non-significant 8.7% increase in FW. Quadriceps muscle volume increased (P < 0.025) in both groups after training. Although the more than twofold greater hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P < 0.025) volume whereas in WS only m. rectus femoris was increased (P < 0.025). Collectively the results of this study suggest more robust muscular adaptations following flywheel than weight stack resistance exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.


Subject(s)
Adaptation, Physiological , Quadriceps Muscle/physiology , Weight Lifting/physiology , Adult , Ergometry , Exercise/physiology , Humans , Hypertrophy , Isometric Contraction/physiology , Leg/physiology , Male , Muscle Strength , Physical Education and Training , Physical Endurance , Quadriceps Muscle/anatomy & histology
16.
Muscle Nerve ; 34(2): 169-77, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16688721

ABSTRACT

A gravity-independent flywheel exercise device (FWED) has been proven effective as a countermeasure to loss of strength and muscle atrophy induced by simulated microgravity. This study assessed muscle-fiber conduction velocity (CV) and surface EMG instantaneous mean power spectral frequency (iMNF) during brief bouts of fatiguing concentric (CON) and eccentric (ECC) exercise on a FWED in order to identify electromyographic (EMG) variables that can be used to provide objective indications of muscle status when exercising with a FWED. Multichannel surface EMG signals were recorded from vastus lateralis and medialis muscles of nine men during: (1) isometric, 60-s action at 50% of maximum voluntary action (MVC); (2) two isometric, linearly increasing force ramps (0-100% MVC); and (3) dynamic CON/ECC coupled actions on the FWED. Muscle-fiber CV and iMNF were computed over time during the three tasks. During ramps, CV, but not iMNF, increased with force (P < 0.001). Conduction velocity and iMNF decreased with the same normalized rate of change in constant-force actions. During CON/ECC actions, the normalized rate of change over time was larger for CV than iMNF (P < 0.05). These results suggest that, during fatiguing, dynamic, variable-force tasks, changes in CV cannot be indirectly inferred by EMG spectral analysis. This underlines the importance of measuring both CV and spectral variables for muscle assessment in dynamic tasks.


Subject(s)
Exercise/physiology , Muscle Fibers, Skeletal/physiology , Neural Conduction/physiology , Weightlessness Countermeasures , Adult , Electromyography , Humans , Isometric Contraction , Knee Joint/physiology , Leg/physiology , Male , Muscle Fatigue/physiology , Muscle, Skeletal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...