Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829200

ABSTRACT

Threat-response neural circuits are conserved across species and play roles in normal behavior and psychiatric diseases. Maladaptive changes in these neural circuits contribute to stress, mood, and anxiety disorders. Active coping in response to stressors is a psychosocial factor associated with resilience against stress-induced mood and anxiety disorders. The neural circuitry underlying active coping is poorly understood, but the functioning of these circuits could be key for overcoming anxiety and related disorders. The supramammillary nucleus (SuM) has been suggested to be engaged by threat. SuM has many projections and a poorly understood diversity of neural populations. In studies using mice, we identified a unique population of glutamatergic SuM neurons (SuMVGLUT2+::POA) based on projection to the preoptic area of the hypothalamus (POA) and found SuMVGLUT2+::POA neurons have extensive arborizations. SuMVGLUT2+::POA neurons project to brain areas that mediate features of the stress and threat responses including the paraventricular nucleus thalamus (PVT), periaqueductal gray (PAG), and habenula (Hb). Thus, SuMVGLUT2+::POA neurons are positioned as a hub, connecting to areas implicated in regulating stress responses. Here we report SuMVGLUT2+::POA neurons are recruited by diverse threatening stressors, and recruitment correlated with active coping behaviors. We found that selective photoactivation of the SuMVGLUT2+::POA population drove aversion but not anxiety like behaviors. Activation of SuMVGLUT2+::POA neurons in the absence of acute stressors evoked active coping like behaviors and drove instrumental behavior. Also, activation of SuMVGLUT2+::POA neurons was sufficient to convert passive coping strategies to active behaviors during acute stress. In contrast, we found activation of GABAergic (VGAT+) SuM neurons (SuMVGAT+) neurons did not alter drive aversion or active coping, but termination of photostimulation was followed by increased mobility in the forced swim test. These findings establish a new node in stress response circuitry that has projections to many brain areas and evokes flexible active coping behaviors.


Subject(s)
Adaptation, Psychological , Neurons , Stress, Psychological , Animals , Neurons/physiology , Neurons/metabolism , Mice , Adaptation, Psychological/physiology , Male , Glutamic Acid/metabolism , Hypothalamus, Posterior/physiology , Neural Pathways/physiology , Mice, Inbred C57BL
2.
J Cereb Blood Flow Metab ; 44(3): 317-332, 2024 03.
Article in English | MEDLINE | ID: mdl-38017387

ABSTRACT

Aneurysmal subarachnoid hemorrhage (SAH) carries significant mortality and morbidity, with nearly half of SAH survivors having major cognitive dysfunction that impairs their functional status, emotional health, and quality of life. Apart from the initial hemorrhage severity, secondary brain injury due to early brain injury and delayed cerebral ischemia plays a leading role in patient outcome after SAH. While many strategies to combat secondary brain injury have been developed in preclinical studies and tested in late phase clinical trials, only one (nimodipine) has proven efficacious for improving long-term functional outcome. The causes of these failures are likely multitude, but include use of therapies targeting only one element of what has proven to be multifactorial brain injury process. Conditioning is a therapeutic strategy that leverages endogenous protective mechanisms to exert powerful and remarkably pleiotropic protective effects against injury to all major cell types of the CNS. The aim of this article is to review the current body of evidence for the use of conditioning agents in SAH, summarize the underlying neuroprotective mechanisms, and identify gaps in the current literature to guide future investigation with the long-term goal of identifying a conditioning-based therapeutic that significantly improves functional and cognitive outcomes for SAH patients.


Subject(s)
Brain Injuries , Brain Ischemia , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/therapy , Subarachnoid Hemorrhage/drug therapy , Quality of Life , Nimodipine , Brain Ischemia/drug therapy , Brain Injuries/complications , Vasospasm, Intracranial/etiology
3.
J Clin Med ; 12(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685555

ABSTRACT

Cerebral autoregulation impairment is a critical aspect of subarachnoid hemorrhage (SAH)-induced secondary brain injury and is also shown to be an independent predictor of delayed cerebral ischemia (DCI) and poor neurologic outcomes. Interestingly, intraoperative hemodynamic and ventilatory parameters were shown to influence patient outcomes after SAH. The aim of the current study was to evaluate the association of intraoperative hypotension and hypocapnia with the occurrence of angiographic vasospasm, DCI, and neurologic outcomes at discharge. Intraoperative data were collected for 390 patients with aneurysmal SAH who underwent general anesthesia for aneurysm clipping or coiling between January 2010 and May 2018. We measured the mean intraoperative blood pressure and end-tidal carbon dioxide (ETCO2), as well as the area under the curve (AUC) for the burden of hypotension: SBP below 100 or MBP below 65 and hypocapnia (ETCO2 < 30), during the intraoperative period. The outcome measures were angiographic vasospasm, DCI, and the neurologic outcomes at discharge as measured by the modified Rankin scale score (an mRS of 0-2 is a good outcome, and 3-6 is a poor outcome). Univariate and logistic regression analyses were performed to evaluate whether blood pressure (BP) and ETCO2 variables were independently associated with outcome measures. Out of 390 patients, 132 (34%) developed moderate-to-severe vasospasm, 114 (29%) developed DCI, and 46% (169) had good neurologic outcomes at discharge. None of the measured intraoperative BP and ETCO2 variables were associated with angiographic vasospasm, DCI, or poor neurologic outcomes. Our study did not identify an independent association between the degree of intraoperative hypotension or hypocapnia in relation to angiographic vasospasm, DCI, or the neurologic outcomes at discharge in SAH patients.

4.
iScience ; 26(7): 107241, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485355

ABSTRACT

Opioid receptors, including the kappa opioid receptor (KOR), exert control over thermoregulation and feeding behavior. Notably, activation of KOR stimulates food intake, leading to postulation that KOR signaling plays a central role in managing energy intake. KOR has also been proposed as a target for treating obesity. Herein, we report studies examining how roles for KOR signaling in regulating thermogenesis, feeding, and energy balance may be interrelated using pharmacological interventions, genetic tools, quantitative thermal imaging, and metabolic profiling. Our findings demonstrate that activation of KOR in the central nervous system causes increased energy expenditure via brown adipose tissue activation. Importantly, pharmacologic, or genetic inhibition of brown adipose tissue thermogenesis prevented the elevated food intake triggered by KOR activation. Furthermore, our data reveal that KOR-mediated thermogenesis elevation is reversibly disrupted by chronic high-fat diet, implicating KOR signaling as a potential mediator in high-fat diet-induced weight gain.

5.
J Am Heart Assoc ; 12(14): e029975, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37449587

ABSTRACT

Background Recent evidence implicates inflammation as a key driver in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Inducible nitric oxide synthase (iNOS) is one of the known major mediators of inflammation. We previously showed that an inhalational anesthetic, isoflurane, provides strong protection against delayed cerebral ischemia after SAH. Our current study aims to define the role of iNOS in isoflurane conditioning-induced protection against delayed cerebral ischemia in a mouse model of SAH. Methods and Results The experiments used 10- to 14-week-old male wild-type (C57BL/6) and iNOS global knockout mice. Anesthetic conditioning was initiated 1 hour after SAH with isoflurane 2% for 1 hour. Isoflurane-induced changes in iNOS expression were measured. N-(3-(aminomethyl) benzyl) acetamidine, a highly selective iNOS inhibitor, was injected intraperitoneally immediately after SAH and then daily. Vasospasm, microvessel thrombosis, and neurological assessment was performed. Data were analyzed by 1-way ANOVA and 2-way repeated measures ANOVA followed by Student Newman Keuls comparison test. Statistical significance was set at P<0.05. Isoflurane conditioning downregulated iNOS expression in naïve and SAH mice. N-(3-(aminomethyl) benzyl) acetamidine attenuated large artery vasospasm and microvessel thrombosis and improved neurological deficits in wild-type animals. iNOS knockout mice were significantly resistant to vasospasm, microvessel thrombosis, and neurological deficits induced by SAH. Combining isoflurane with N-(3-(aminomethyl) benzyl) acetamidine did not offer extra protection, nor did treating iNOS knockout mice with isoflurane. Conclusions Isoflurane conditioning-induced delayed cerebral ischemia protection appears to be mediated by downregulating iNOS. iNOS is a potential therapeutic target to improve outcomes after SAH.


Subject(s)
Brain Ischemia , Isoflurane , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Mice , Male , Animals , Nitric Oxide Synthase Type II/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/metabolism , Isoflurane/pharmacology , Mice, Inbred C57BL , Brain Ischemia/prevention & control , Cerebral Infarction , Mice, Knockout , Vasospasm, Intracranial/prevention & control
6.
Biol Psychiatry ; 93(6): 512-523, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36494220

ABSTRACT

BACKGROUND: Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS: Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS: We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS: These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.


Subject(s)
Motivation , Nucleus Accumbens , Mice , Animals , Nucleus Accumbens/physiology , Mice, Obese , Neurons/physiology , Obesity , Receptors, Dopamine D1/metabolism , Mice, Inbred C57BL
7.
Elife ; 102021 03 05.
Article in English | MEDLINE | ID: mdl-33667158

ABSTRACT

Maintaining stable body temperature through environmental thermal stressors requires detection of temperature changes, relay of information, and coordination of physiological and behavioral responses. Studies have implicated areas in the preoptic area of the hypothalamus (POA) and the parabrachial nucleus (PBN) as nodes in the thermosensory neural circuitry and indicate that the opioid system within the POA is vital in regulating body temperature. In the present study we identify neurons projecting to the POA from PBN expressing the opioid peptides dynorphin and enkephalin. Using mouse models, we determine that warm-activated PBN neuronal populations overlap with both prodynorphin (Pdyn) and proenkephalin (Penk) expressing PBN populations. Here we report that in the PBN Prodynorphin (Pdyn) and Proenkephalin (Penk) mRNA expressing neurons are partially overlapping subsets of a glutamatergic population expressing Solute carrier family 17 (Slc17a6) (VGLUT2). Using optogenetic approaches we selectively activate projections in the POA from PBN Pdyn, Penk, and VGLUT2 expressing neurons. Our findings demonstrate that Pdyn, Penk, and VGLUT2 expressing PBN neurons are critical for physiological and behavioral heat defense.


Subject(s)
Enkephalins/metabolism , Parabrachial Nucleus/physiology , Protein Precursors/metabolism , Animals , Dynorphins/genetics , Dynorphins/metabolism , Enkephalins/genetics , Female , Hot Temperature , Male , Mice , Mice, Transgenic , Optogenetics , Preoptic Area/physiology , Protein Precursors/genetics
8.
Nucleic Acids Res ; 47(17): e97, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31287871

ABSTRACT

A common mechanism for inducibly controlling protein function relies on reconstitution of split protein fragments using chemical or light-induced dimerization domains. A protein is split into fragments that are inactive on their own, but can be reconstituted after dimerization. As many split proteins retain affinity for their complementary half, maintaining low activity in the absence of an inducer remains a challenge. Here, we systematically explore methods to achieve tight regulation of inducible proteins that are effective despite variation in protein expression level. We characterize a previously developed split Cre recombinase (PA-Cre2.0) that is reconstituted upon light-induced CRY2-CIB1 dimerization, in cultured cells and in vivo in rodent brain. In culture, PA-Cre2.0 shows low background and high induced activity over a wide range of expression levels, while in vivo the system also shows low background and sensitive response to brief light inputs. The consistent activity stems from fragment compartmentalization that shifts localization toward the cytosol. Extending this work, we exploit nuclear compartmentalization to generate light-and-chemical regulated versions of Cre recombinase. This work demonstrates in vivo functionality of PA-Cre2.0, describes new approaches to achieve tight inducible control of Cre DNA recombinase, and provides general guidelines for further engineering and application of split protein fragments.


Subject(s)
Dimerization , Genetic Engineering/methods , Integrases/genetics , Recombination, Genetic , Animals , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Compartmentation , Cryptochromes/genetics , Gene Expression , HEK293 Cells , Humans , Integrases/biosynthesis , Integrases/metabolism , Light , Mice
9.
Neuron ; 87(3): 605-20, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26212712

ABSTRACT

The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing, we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin-releasing hormone(+) (CRH(+)) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders.


Subject(s)
Adrenergic Neurons/metabolism , Anxiety/metabolism , Corticotropin-Releasing Hormone/metabolism , Locus Coeruleus/metabolism , Stress, Psychological/metabolism , Adrenergic Neurons/chemistry , Animals , Anxiety/psychology , Locus Coeruleus/chemistry , Male , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism , Optogenetics/methods , Stress, Psychological/psychology
10.
J Neurosci ; 32(29): 10045-52, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22815518

ABSTRACT

Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.


Subject(s)
Action Potentials/physiology , Circadian Rhythm/physiology , Kv1.4 Potassium Channel/metabolism , Motor Activity/physiology , Neurons/physiology , Shal Potassium Channels/metabolism , Suprachiasmatic Nucleus/physiology , Animals , Ion Channel Gating/physiology , Kv1.4 Potassium Channel/genetics , Male , Membrane Potentials/physiology , Mice , Mice, Knockout , Shal Potassium Channels/genetics
11.
J Neurosci ; 32(17): 5716-27, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22539834

ABSTRACT

The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na⁺ channel accessory subunit Navß1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navß1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b-null cortical pyramidal neurons lacking Navß1. Biochemical and voltage-clamp experiments further demonstrated that Navß1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Navß1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability.


Subject(s)
Gene Expression Regulation/physiology , Neurons/physiology , Shal Potassium Channels/metabolism , Sodium Channels/metabolism , Analysis of Variance , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biophysics , Biotinylation , Cell Line, Transformed , Cerebral Cortex/cytology , Cycloheximide/pharmacology , Electric Stimulation , Endocytosis/drug effects , Endocytosis/genetics , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Patch-Clamp Techniques , Protein Synthesis Inhibitors/pharmacology , Proteomics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Transferrin/metabolism , Shal Potassium Channels/deficiency , Sodium Channels/deficiency , Transfection , Voltage-Gated Sodium Channel beta-1 Subunit
12.
J Biol Chem ; 287(12): 9640-50, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22311982

ABSTRACT

Rapidly activating and inactivating somatodendritic voltage-gated K(+) (Kv) currents, I(A), play critical roles in the regulation of neuronal excitability. Considerable evidence suggests that native neuronal I(A) channels function in macromolecular protein complexes comprising pore-forming (α) subunits of the Kv4 subfamily together with cytosolic, K(+) channel interacting proteins (KChIPs) and transmembrane, dipeptidyl peptidase 6 and 10 (DPP6/10) accessory subunits, as well as other accessory and regulatory proteins. Several recent studies have demonstrated a critical role for the KChIP subunits in the generation of native Kv4.2-encoded channels and that Kv4.2-KChIP complex formation results in mutual (Kv4.2-KChIP) protein stabilization. The results of the experiments here, however, demonstrate that expression of DPP6 in the mouse cortex is unaffected by the targeted deletion of Kv4.2 and/or Kv4.3. Further experiments revealed that heterologously expressed DPP6 and DPP10 localize to the cell surface in the absence of Kv4.2, and that co-expression with Kv4.2 does not affect total or cell surface DPP6 or DPP10 protein levels. In the presence of DPP6 or DPP10, however, cell surface Kv4.2 protein expression is selectively increased. Further addition of KChIP3 in the presence of DPP10 markedly increases total and cell surface Kv4.2 protein levels, compared with cells expressing only Kv4.2 and DPP10. Taken together, the results presented here demonstrate that the expression and localization of the DPP accessory subunits are independent of Kv4 α subunits and further that the DPP6/10 and KChIP accessory subunits independently stabilize the surface expression of Kv4.2.


Subject(s)
Cell Membrane/enzymology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Shal Potassium Channels/chemistry , Up-Regulation , Animals , Cell Membrane/chemistry , Cell Membrane/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Humans , Mice , Mice, Knockout , Protein Stability , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism
13.
J Neurosci ; 30(41): 13644-55, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20943905

ABSTRACT

The rapidly activating and inactivating voltage-dependent outward K(+) (Kv) current, I(A), is widely expressed in central and peripheral neurons. I(A) has long been recognized to play important roles in determining neuronal firing properties and regulating neuronal excitability. Previous work demonstrated that Kv4.2 and Kv4.3 α-subunits are the primary determinants of I(A) in mouse cortical pyramidal neurons. Accumulating evidence indicates that native neuronal Kv4 channels function in macromolecular protein complexes that contain accessory subunits and other regulatory molecules. The K(+) channel interacting proteins (KChIPs) are among the identified Kv4 channel accessory subunits and are thought to be important for the formation and functioning of neuronal Kv4 channel complexes. Molecular genetic, biochemical, and electrophysiological approaches were exploited in the experiments described here to examine directly the roles of KChIPs in the generation of functional Kv4-encoded I(A) channels. These combined experiments revealed that KChIP2, KChIP3, and KChIP4 are robustly expressed in adult mouse posterior (visual) cortex and that all three proteins coimmunoprecipitate with Kv4.2. In addition, in cortical pyramidal neurons from mice lacking KChIP3 (KChIP3(-/-)), mean I(A) densities were reduced modestly, whereas in mean I(A) densities in KChIP2(-/-) and WT neurons were not significantly different. Interestingly, in both KChIP3(-/-) and KChIP2(-/-) cortices, the expression levels of the other KChIPs (KChIP2 and 4 or KChIP3 and 4, respectively) were increased. In neurons expressing constructs to mediate simultaneous RNA interference-induced reductions in the expression of KChIP2, 3, and 4, I(A) densities were markedly reduced and Kv current remodeling was evident.


Subject(s)
Kv Channel-Interacting Proteins/physiology , Pyramidal Cells/physiology , Repressor Proteins/physiology , Visual Cortex/physiology , Animals , Blotting, Western , Cells, Cultured , Electrophysiology , Immunoprecipitation , Ion Channel Gating/physiology , Membrane Potentials/physiology , Mice , Pyramidal Cells/cytology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation , Visual Cortex/cytology
14.
Neurosci Lett ; 486(2): 73-7, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20813163

ABSTRACT

Considerable evidence indicates that native neuronal voltage-gated K+ (Kv) currents reflect the functioning of macromolecular Kv channel complexes, composed of pore-forming (α)-subunits, cytosolic and transmembrane accessory subunits, together with regulatory and scaffolding proteins. The individual components of these macromolecular complexes appear to influence the stability, the trafficking, the localization and/or the biophysical properties of the channels. Recent studies suggest that Kv channel accessory subunits subserve multiple roles in the generation of native neuronal Kv channels. Additional recent findings suggest that Kv channel accessory subunits can respond to changes in intracellular Ca(2+) or metabolism and thereby integrate signaling pathways to regulate Kv channel expression and properties. Although studies in heterologous cells have provided important insights into the effects of accessory subunits on Kv channel expression/properties, it has become increasingly clear that experiments in neurons are required to define the physiological roles of Kv channel accessory and associated proteins. A number of technological and experimental hurdles remain that must be overcome in the design, execution and interpretation of experiments aimed at detailing the functional roles of accessory subunits and associated proteins in the generation of native neuronal Kv channels. With the increasing association of altered Kv channel functioning with neurological disorders, the potential impact of these efforts is clear.


Subject(s)
Neurons/physiology , Potassium Channels, Voltage-Gated/physiology , Animals , Calcium/metabolism , Humans , Intracellular Space/metabolism , Multiprotein Complexes/physiology , Protein Subunits/physiology , Signal Transduction
15.
J Neurosci ; 30(14): 5092-101, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20371829

ABSTRACT

The rapidly activating and inactivating voltage-gated K(+) (Kv) current, I(A), is broadly expressed in neurons and is a key regulator of action potential repolarization, repetitive firing, backpropagation (into dendrites) of action potentials, and responses to synaptic inputs. Interestingly, results from previous studies on a number of neuronal cell types, including hippocampal, cortical, and spinal neurons, suggest that macroscopic I(A) is composed of multiple components and that each component is likely encoded by distinct Kv channel alpha-subunits. The goals of the experiments presented here were to test this hypothesis and to determine the molecular identities of the Kv channel alpha-subunits that generate I(A) in cortical pyramidal neurons. Combining genetic disruption of individual Kv alpha-subunit genes with pharmacological approaches to block Kv currents selectively, the experiments here revealed that Kv1.4, Kv4.2, and Kv4.3 alpha-subunits encode distinct components of I(A) that together underlie the macroscopic I(A) in mouse (male and female) cortical pyramidal neurons. Recordings from neurons lacking both Kv4.2 and Kv4.3 (Kv4.2(-/-)/Kv4.3(-/-)) revealed that, although Kv1.4 encodes a minor component of I(A), the Kv1.4-encoded current was found in all the Kv4.2(-/-)/Kv4.3(-/-) cortical pyramidal neurons examined. Of the cortical pyramidal neurons lacking both Kv4.2 and Kv1.4, 90% expressed a Kv4.3-encoded I(A) larger in amplitude than the Kv1.4-encoded component. The experimental findings also demonstrate that the targeted deletion of the individual Kv alpha-subunits encoding components of I(A) results in electrical remodeling that is Kv alpha-subunit specific.


Subject(s)
Cerebral Cortex/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Ion Channel Gating/genetics , Kv1.4 Potassium Channel/genetics , Protein Subunits/genetics , Pyramidal Cells/physiology , Shal Potassium Channels/genetics , Action Potentials/drug effects , Action Potentials/genetics , Animals , Cerebral Cortex/drug effects , Female , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gi-Go/deficiency , Gene Targeting , Kv1.4 Potassium Channel/antagonists & inhibitors , Kv1.4 Potassium Channel/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/physiology , Potassium Channel Blockers/pharmacology , Protein Subunits/antagonists & inhibitors , Protein Subunits/deficiency , Pyramidal Cells/drug effects , Shal Potassium Channels/antagonists & inhibitors , Shal Potassium Channels/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...