Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37392738

ABSTRACT

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Subject(s)
Ebolavirus , Viral Matrix Proteins , Ebolavirus/genetics , Ebolavirus/metabolism , Mutation , Oxidation-Reduction , Sudan , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virus Assembly , Humans
2.
Sci Adv ; 8(29): eabn1440, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857835

ABSTRACT

Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.

3.
Cell Rep ; 39(8): 110841, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613585

ABSTRACT

Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines.


Subject(s)
Lassa Fever , Lassa virus , Antibodies, Neutralizing , Epitopes , Glycoproteins/metabolism , Humans , Lassa Fever/prevention & control , Lassa virus/metabolism , Viral Envelope Proteins
4.
Commun Biol ; 4(1): 1239, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716403

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory tract infections in children. To uncover new antiviral therapies, we developed a live cell-based high content screening approach for rapid identification of RSV inhibitors and characterized five drug classes which inhibit the virus. Among the molecular targets for each hit, there was a strong functional enrichment in lipid metabolic pathways. Modulation of lipid metabolites by statins, a key hit from our screen, decreases the production of infectious virus through a combination of cholesterol and isoprenoid-mediated effects. Notably, RSV infection globally upregulates host protein prenylation, including the prenylation of Rho GTPases. Treatment by statins or perillyl alcohol, a geranylgeranyltransferase inhibitor, reduces infection in vitro. Of the Rho GTPases assayed in our study, a loss in Rac1 activity strongly inhibits the virus through a decrease in F protein surface expression. Our findings provide new insight into the importance of host lipid metabolism to RSV infection and highlight geranylgeranyltransferases as an antiviral target for therapeutic development.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Antiviral Agents/chemistry , Virus Replication/drug effects
5.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34696391

ABSTRACT

Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections in young children and infection has been linked to the development of persistent lung disease in the form of wheezing and asthma. Despite substantial research efforts, there are no RSV vaccines currently available and an effective monoclonal antibody targeting the RSV fusion protein (palivizumab) is of limited general use given the associated expense. Therefore, the development of novel approaches to prevent RSV infection is highly desirable to improve pediatric health globally. We have developed a method to generate alveolar-like macrophages (ALMs) from pluripotent stem cells. These ALMs have shown potential to promote airway innate immunity and tissue repair and so we hypothesized that ALMs could be used as a strategy to prevent RSV infection. Here, we demonstrate that ALMs are not productively infected by RSV and prevent the infection of epithelial cells. Prevention of epithelial infection was mediated by two different mechanisms: phagocytosis of RSV particles and release of an antiviral soluble factor different from type I interferon. Furthermore, intratracheal administration of ALMs protected mice from subsequent virus-induced weight loss and decreased lung viral titres and inflammation, indicating that ALMs can impair the pathogenesis of RSV infection. Our results support a prophylactic role for ALMs in the setting of RSV infection and warrant further studies on stem cell-derived ALMs as a novel cell-based therapy for pulmonary viral infections.


Subject(s)
Immunity, Innate , Macrophages/immunology , Macrophages/virology , Pluripotent Stem Cells/physiology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Animals , Antibodies, Viral/blood , Cell Line , Cell- and Tissue-Based Therapy/methods , Epithelial Cells/virology , Fetal Blood/cytology , Humans , Inflammation/virology , Macrophages/classification , Macrophages, Alveolar/immunology , Mice , Mice, Inbred BALB C , Pluripotent Stem Cells/immunology , Respiratory Syncytial Virus Infections/therapy
6.
Elife ; 92020 10 05.
Article in English | MEDLINE | ID: mdl-33016878

ABSTRACT

Filoviruses such as Ebola and Marburg virus bud from the host membrane as enveloped virions. This process is achieved by the matrix protein VP40. When expressed alone, VP40 induces budding of filamentous virus-like particles, suggesting that localization to the plasma membrane, oligomerization into a matrix layer, and generation of membrane curvature are intrinsic properties of VP40. There has been no direct information on the structure of VP40 matrix layers within viruses or virus-like particles. We present structures of Ebola and Marburg VP40 matrix layers in intact virus-like particles, and within intact Marburg viruses. VP40 dimers assemble extended chains via C-terminal domain interactions. These chains stack to form 2D matrix lattices below the membrane surface. These lattices form a patchwork assembly across the membrane and suggesting that assembly may begin at multiple points. Our observations define the structure and arrangement of the matrix protein layer that mediates formation of filovirus particles.


Subject(s)
Ebolavirus/physiology , Marburgvirus/physiology , Protein Multimerization , Viral Matrix Proteins/chemistry , Cell Membrane/physiology , Ebolavirus/chemistry , Marburgvirus/chemistry
7.
mBio ; 10(4)2019 07 23.
Article in English | MEDLINE | ID: mdl-31337716

ABSTRACT

The filoviruses are etiological agents of life-threatening hemorrhagic fever with high mortality rate and risk of potential outbreak. Among members of this family, the Ebola (EBOV), Sudan (SUDV), and Marburg (MARV) viruses are considered the most pathogenic for humans. The ebolavirus nucleoprotein (NP) is the most abundant protein in infected cells and is essential for viral transcription and replication; thus, it represents an attractive target for therapeutic intervention. Here, we present the structure of SUDV NP in complex with the amino-terminal portion of the phosphoprotein VP35 at 2.3 Å. This structure captures VP35 chaperoning SUDV NP in a monomeric and RNA-free state. This transient state has been proposed to be key to maintaining a pool of monomeric and RNA-free NPs prior to NP-NP polymerization and encapsidation of the viral RNA genome. This structure also reveals a newly visualized interaction between NP and VP35, a well-defined beta sheet that is not present in previous structures. Affinity binding assays demonstrate that this beta sheet is essential for maintaining the high-affinity interaction between VP35 and a hydrophobic pocket on SUDV NP, and electron microscopy indicates the importance of this binding interaction to the oligomeric state and assembly of NP in human cells. Complementary structure-directed mutagenesis identifies critical residues conserved across the filovirus family that could be targeted by broadly effective antivirals.IMPORTANCE Outbreaks of the filoviruses can be unpredictable in timing, location, and identity of the causative virus, with each of Ebola virus, Sudan virus, Bundibugyo virus, and Marburg virus reemerging in the last several years to cause human disease with 30 to 90% lethality. The 2014-2016 outbreak in particular, with nearly 30,000 patients, highlighted the ability of these viruses to emerge unexpectedly and spread rapidly. Two ebolavirus outbreaks have emerged this year, yet we still lack FDA-approved drugs with pan-filovirus activity to treat existing and emergent ebolaviruses. For all filoviruses, the interaction between the nucleoprotein and the phosphoprotein is essential for the virus life cycle and is a potential target for therapeutic intervention. In this report, we describe the crystal structure of the SUDV nucleoprotein with the interacting domain of the viral phosphoprotein, and we identify residues critical for high-affinity interaction and for control of the oligomeric state of the nucleoprotein. Structural comparison of this heterodimer with other members of the filovirus family allowed us to find conserved and essential atomic features that will facilitate understanding of the virus life cycle and the rational design of antivirals.


Subject(s)
Ebolavirus/drug effects , Filoviridae/drug effects , Nucleoproteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Crystallography, X-Ray , Filoviridae/pathogenicity , Phosphoproteins/chemistry , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
8.
Am J Respir Cell Mol Biol ; 59(6): 733-744, 2018 12.
Article in English | MEDLINE | ID: mdl-30095982

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.


Subject(s)
Cardiac Glycosides/pharmacology , Epithelial Cells/drug effects , Nasal Mucosa/drug effects , Potassium/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/drug effects , Sodium/metabolism , Antiviral Agents/pharmacology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/virology , Homeostasis , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
9.
Vaccines (Basel) ; 5(3)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28925950

ABSTRACT

Nucleolin (NCL) has been reported as a cellular receptor for the human respiratory syncytial virus (RSV). We studied the effects of re-purposing AS1411, an anti-cancer compound that binds cell surface NCL, as a possible novel strategy for RSV therapy in vitro and in vivo. AS1411 was administered to RSV-infected cultures of non-polarized (HEp-2) and polarized (MDCK) epithelial cells and to virus-infected mice and cotton rats. Results of in vitro experiments showed that AS1411, used in micromolar concentrations, was associated with decreases in the number of virus-positive cells. Intranasal administration of AS1411 (50 mg/kg) to RSV-infected mice and cotton rats was associated with partial reductions in lung viral titers, decreased virus-associated airway inflammation, and decreased IL-4/IFN-γ ratios when compared to untreated, infected animals. In conclusion, our findings indicate that therapeutic use of AS1411 has modest effects on RSV replication and host response. While the results underscore the challenges of targeting cell surface NCL as a potential novel strategy for RSV therapy, they also highlight the potential of cell surface NCL as a therapeutic target.

11.
Nat Med ; 20(5): 493-502, 2014 May.
Article in English | MEDLINE | ID: mdl-24784232

ABSTRACT

Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12(-/-) but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrate's gene exons and by MMP-12-mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3-infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments.


Subject(s)
Cell Nucleus/genetics , Immunity/genetics , Interferon-alpha/genetics , Matrix Metalloproteinase 12/genetics , Animals , Binding Sites , Cell Nucleus/immunology , Cell Nucleus/metabolism , Cytosol/metabolism , Cytosol/virology , HeLa Cells , Humans , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Interferon-alpha/immunology , Interferon-alpha/metabolism , Matrix Metalloproteinase 12/metabolism , Mice , Mice, Knockout , NF-KappaB Inhibitor alpha , Pancreas/immunology , Pancreas/virology , Rous sarcoma virus/genetics , Rous sarcoma virus/pathogenicity , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...