Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658032

ABSTRACT

BACKGROUND: While immunotherapy has been highly successful for the treatment of some cancers, for others, the immune response to tumor antigens is weak leading to treatment failure. The resistance of tumors to checkpoint inhibitor therapy may be caused by T cell exhaustion resulting from checkpoint activation. METHODS: In this study, lentiviral vectors that expressed T cell epitopes of an experimentally introduced tumor antigen, ovalbumin, or the endogenous tumor antigen, Trp1 were developed. The vectors coexpressed CD40 ligand (CD40L), which served to mature the dendritic cells (DCs), and a soluble programmed cell death protein 1 (PD-1) microbody to prevent checkpoint activation. Vaccination of mice bearing B16.OVA melanomas with vector-transduced DCs induced the proliferation and activation of functional, antigen-specific, cytolytic CD8 T cells. RESULTS: Vaccination induced the expansion of CD8 T cells that infiltrated the tumors to suppress tumor growth. Vector-encoded CD40L and PD-1 microbody increased the extent of tumor growth suppression. Adoptive transfer demonstrated that the effect was mediated by CD8 T cells. Direct injection of the vector, without the need for ex vivo transduction of DCs, was also effective. CONCLUSIONS: This study suggests that therapeutic vaccination that induces tumor antigen-specific CD8 T cells coupled with a vector-expressed checkpoint inhibitor can be an effective means to suppress the growth of tumors that are resistant to conventional immunotherapy.


Subject(s)
Cancer Vaccines , Immune Checkpoint Inhibitors , Lentivirus , Animals , Mice , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Lentivirus/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Dendritic Cells/immunology , Disease Models, Animal , CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Cell Line, Tumor , Mice, Inbred C57BL , Female
2.
BMJ Open ; 14(1): e076992, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233059

ABSTRACT

OBJECTIVES: There is limited qualitative research on patients' experiences with long COVID-19, and how specific symptoms impact their daily lives. The study aimed to understand patients' lived experiences of long COVID-19 and to develop a conceptual model representing the symptoms and their impact on overall quality of life. SETTING: Qualitative study consisting of a comprehensive literature review, and in-depth clinician and patient semistructured interviews. PARTICIPANTS: Forty-one adult patients with long COVID-19, of whom 18 (44%) were recruited through Regeneron Pharmaceuticals's clinical trials and 23 (56%) through recruitment agencies; 85.4% were female and 73.2% were White. Five independent clinicians treating patients with long COVID-19 were interviewed. Concept saturation was also assessed. PRIMARY AND SECONDARY OUTCOMES: Interview transcripts were analysed thematically to identify concepts of interest spontaneously mentioned by patients, including symptoms and their impacts on daily life, to guide the development of the conceptual model. RESULTS: Findings from the literature review and clinician and patient interviews resulted in the development of a conceptual model comprising two overarching domains: symptoms (upper respiratory tract, lower respiratory tract, smell and taste, systemic, gastrointestinal, neurocognitive and other) and impacts (activities of daily living, instrumental activities of daily living, physical impacts, emotional, social/leisure activities and professional impacts). Saturation was achieved for the reported impacts. The symptoms reported were heterogenic; neurocognitive symptoms, such as numbness, ringing in ears, haziness, confusion, forgetfulness/memory problems, brain fog, concentration, difficulties finding the right word and challenges with fine motor skills, were particularly pertinent for several months. CONCLUSION: The conceptual model, developed based on patient experience data of long COVID-19, highlighted numerous symptoms that impact patients' physical and mental well-being, and suggests humanistic unmet needs. Prospective real-world studies are warranted to understand the pattern of long COVID-19 experienced in larger samples over longer periods of time.


Subject(s)
COVID-19 , Quality of Life , Adult , Humans , Female , Male , Quality of Life/psychology , Post-Acute COVID-19 Syndrome , Activities of Daily Living , Prospective Studies , Qualitative Research
4.
Sci Rep ; 13(1): 12784, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550377

ABSTRACT

Severe, protracted symptoms are associated with poor outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In a placebo-controlled study of casirivimab and imdevimab (CAS + IMD) in persons at high risk of severe coronavirus disease 2019 (COVID-19; n = 3816), evolution of individual symptoms was assessed for resolution patterns across risk factors, and baseline SARS-CoV-2-specific antibody responses against S1 and N domains. CAS + IMD versus placebo provided statistically significant resolution for 17/23 symptoms, with greater response linked to absence of endogenous anti-SARS-CoV-2 immunoglobulin (Ig)G, IgA, or specific neutralizing antibodies at baseline, or high baseline viral load. Resolution of five key symptoms (onset days 3-5)-dyspnea, cough, feeling feverish, fatigue, and loss of appetite-independently correlated with reduced hospitalization and death (hazard ratio range: 0.31-0.56; P < 0.001-0.043), and was more rapid in CAS + IMD-treated patients lacking robust early antibody responses. Those who seroconverted late still benefited from treatment. Thus, highly neutralizing COVID-19-specific antibodies provided by CAS + IMD treatment accelerated key symptom resolution associated with hospitalization and death in those at high risk for severe disease as well as in those lacking early, endogenous neutralizing antibody responses.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral
5.
Sci Transl Med ; 15(678): eabo0205, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36630481

ABSTRACT

The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Interleukin Receptor Common gamma Subunit , T-Lymphocytes , Animals , Mice , Anemia, Aplastic/metabolism , Antibodies, Monoclonal/metabolism , Cytokines/metabolism , Graft vs Host Disease/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Interleukin Receptor Common gamma Subunit/antagonists & inhibitors , Interleukin Receptor Common gamma Subunit/metabolism , Primates
6.
Vision Res ; 204: 108161, 2023 03.
Article in English | MEDLINE | ID: mdl-36529048

ABSTRACT

During postnatal development, an emmetropization feedback mechanism uses visual cues to modulate the axial growth of eyes so that, with maturation, images of distant objects are in focus on the retina. If the visual cues indicate that the eye has become too long, it generates STOP signals that slow eye elongation. Myopia is a failure of this process where the eye becomes too long. The existing animal models of myopia have been essential in understanding the mechanics of emmetropization but use visual cues that lead to rapidly progressing myopia and don't match the stimuli that lead to human myopia. Form deprivation removes esssentially all spatial contrast. Minus lens wear accurately guides axial elongation to restore sharp focus: technically it is not a model of myopia! In contrast, childhood myopia involves a slow drift into myopia, even with the presence of clear images. We hypothesize that, in the modern visual environment, STOP signals are present but often are not quite strong enough to prevent myopic progression. Using tree shrews, small diurnal mammals closely related to primates, we have developed an animal model that we propose better represents this situation. We used limited bandwidth light to provide limited chromatic cues for emmetropization that are not quite enough to produce fully effective STOP signaling, resulting in a slow drift into myopia as seen in children. We hypothesize that this animal model of myopia may prove useful in evaluating anti-myopia therapies where form deprivation and minus lens wear would be too powerful.


Subject(s)
Myopia , Tupaia , Animals , Child , Humans , Tupaiidae , Disease Models, Animal , Eye , Retina , Refraction, Ocular
7.
JAMA Netw Open ; 5(8): e2225411, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35969402

ABSTRACT

Importance: The monoclonal antibody combination of casirivimab and imdevimab reduced viral load, hospitalization, or death when administered as a 1200-mg or greater intravenous (IV) dose in a phase 3 COVID-19 outpatient study. Subcutaneous (SC) and/or lower IV doses should increase accessibility and/or drug supplies for patients. Objective: To assess the virologic efficacy of casirivimab and imdevimab across different IV and SC doses compared with placebo. Design, Setting, and Participants: This phase 2, randomized, double-blind, placebo-controlled, parallel-group, dose-ranging study included outpatients with SARS-CoV-2 infection at 47 sites across the United States. Participants could be symptomatic or asymptomatic; symptomatic patients with risk factors for severe COVID-19 were excluded. Data were collected from December 15, 2020, to March 4, 2021. Interventions: Patients were randomized to a single IV dose (523 patients) of casirivimab and imdevimab at 300, 600, 1200, or 2400 mg or placebo; or a single SC dose (292 patients) of casirivimab and imdevimab at 600 or 1200 mg or placebo. Main Outcomes and Measures: The primary end point was the time-weighted average daily change from baseline (TWACB) in viral load from day 1 (baseline) through day 7 in patients seronegative for SARS-CoV-2 at baseline. Results: Among 815 randomized participants, 507 (282 randomized to IV treatment, 148 randomized to SC treatment, and 77 randomized to placebo) were seronegative at baseline and included in the primary efficacy analysis. Participants randomized to IV had a mean (SD) age of 34.6 (9.6) years (160 [44.6%] men; 14 [3.9%] Black; 121 [33.7%] Hispanic or Latino; 309 [86.1%] White); those randomized to SC had a mean age of 34.1 (10.0) years (102 [45.3%] men; 75 [34.7%] Hispanic or Latino; 6 [2.7%] Black; 190 [84.4%] White). All casirivimab and imdevimab treatments showed significant virologic reduction through day 7. Least-squares mean differences in TWACB viral load for casirivimab and imdevimab vs placebo ranged from -0.56 (95% CI; -0.89 to -0.24) log10 copies/mL for the 1200-mg IV dose to -0.71 (95% CI, -1.05 to -0.38) log10 copies/mL for the 2400-mg IV dose. There were no adverse safety signals or dose-related safety findings, grade 2 or greater infusion-related or hypersensitivity reactions, grade 3 or greater injection-site reactions, or fatalities. Two serious adverse events not related to COVID-19 or the study drug were reported. Conclusions and Relevance: In this randomized clinical trial including outpatients with asymptomatic and low-risk symptomatic SARS-CoV-2, all IV and SC doses of casirivimab and imdevimab comparably reduced viral load. Trial Registration: ClinicalTrials.gov Identifier: NCT04666441.


Subject(s)
COVID-19 Drug Treatment , Adult , Antibodies, Monoclonal, Humanized , Female , Humans , Male , Outpatients , SARS-CoV-2 , United States
8.
JCI Insight ; 7(18)2022 09 22.
Article in English | MEDLINE | ID: mdl-35972807

ABSTRACT

Lentiviral vector-based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression. Injection of a lentiviral vector encoding an MHC class I-restricted T cell epitope of lymphocytic choriomeningitis virus (LCMV) and CD40 ligand induced an antigen-specific cytolytic CD8+ T lymphocyte response that protected the mice from infection. The injection of chronically infected mice with a lentiviral vector encoding LCMV MHC class I and II T cell epitopes and a soluble programmed cell death 1 microbody rapidly cleared the virus. Vaccination by direct injection of lentiviral vector was more effective in sterile alpha motif and HD-domain containing protein 1-knockout (SAMHD1-knockout) mice, suggesting that lentiviral vectors containing Vpx, a lentiviral protein that increases the efficiency of dendritic cell transduction by inducing the degradation of SAMHD1, would be an effective strategy for the treatment of chronic disease in humans.


Subject(s)
Viral Vaccines , Virus Diseases , Animals , CD40 Ligand , Epitopes, T-Lymphocyte , Genetic Vectors , Lentivirus , Lymphocytic choriomeningitis virus , Mice , SAM Domain and HD Domain-Containing Protein 1 , Viral Vaccines/immunology
9.
Exp Eye Res ; 222: 109187, 2022 09.
Article in English | MEDLINE | ID: mdl-35843288

ABSTRACT

There is a world-wide epidemic of myopia (nearsightedness), produced largely by human-made environmental visual cues that disrupt the emmetropization feedback mechanism that normally uses defocus cues to produce and maintain eyes in good focus. Previous studies have shown that the wavelength of light affects this process and that myopic defocus can slow the progression of myopia in children. We first asked if continuous exposure to a small cage with restricted viewing distance would produce an environmentally-induced myopia in tree shrews, small diurnal mammals closely related to primates. A group (n = 7) spent 11 days in a small cage with restricted viewing distance; one wall was a video display covered with Maltese crosses that included low-to-high spatial frequencies in the range visible to tree shrews. This group developed myopia (-1.2 ± 0.4 [stderr] D) that was significant relative to a colony group of seven animals (+1.0 ± 0.2 D) raised in mesh cages allowing more distant viewing. We then asked if chromatically-simulated myopic defocus, produced by blurring just the blue channel of the video display, would counteract this environmentally-induced myopia in a group of eight tree shrews. This group instead became significantly hyperopic (+4.0 ± 0.4 D) due to slowed axial elongation. These results demonstrate the high potency of chromatic cues in refractive regulation and may provide the basis for an anti-myopia treatment in humans.


Subject(s)
Hyperopia , Myopia , Animals , Child , Eye , Humans , Refraction, Ocular , Shrews , Tupaiidae
10.
Vis Neurosci ; 39: E001, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35094741

ABSTRACT

The purpose of this brief communication is to make publicly available three unpublished manuscripts on the organization of retinal ganglion cells in the tree shrew. The manuscripts were authored in 1986 by Dr. Edward DeBruyn, a PhD student in the laboratory of the late Dr. Vivien Casagrande at Vanderbilt University. As diurnal animals closely related to primates, tree shrews are ideally suited for comparative analyses of visual structures including the retina. We hope that providing this basic information in a citable form inspires other groups to pursue further characterization of the tree shrew retina using modern techniques.


Subject(s)
Retinal Ganglion Cells , Tupaia , Animals , Humans , Primates , Retina , Tupaiidae
11.
N Engl J Med ; 385(23): e81, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34587383

ABSTRACT

BACKGROUND: In the phase 1-2 portion of an adaptive trial, REGEN-COV, a combination of the monoclonal antibodies casirivimab and imdevimab, reduced the viral load and number of medical visits in patients with coronavirus disease 2019 (Covid-19). REGEN-COV has activity in vitro against current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. METHODS: In the phase 3 portion of an adaptive trial, we randomly assigned outpatients with Covid-19 and risk factors for severe disease to receive various doses of intravenous REGEN-COV or placebo. Patients were followed through day 29. A prespecified hierarchical analysis was used to assess the end points of hospitalization or death and the time to resolution of symptoms. Safety was also evaluated. RESULTS: Covid-19-related hospitalization or death from any cause occurred in 18 of 1355 patients in the REGEN-COV 2400-mg group (1.3%) and in 62 of 1341 patients in the placebo group who underwent randomization concurrently (4.6%) (relative risk reduction [1 minus the relative risk], 71.3%; P<0.001); these outcomes occurred in 7 of 736 patients in the REGEN-COV 1200-mg group (1.0%) and in 24 of 748 patients in the placebo group who underwent randomization concurrently (3.2%) (relative risk reduction, 70.4%; P = 0.002). The median time to resolution of symptoms was 4 days shorter with each REGEN-COV dose than with placebo (10 days vs. 14 days; P<0.001 for both comparisons). REGEN-COV was efficacious across various subgroups, including patients who were SARS-CoV-2 serum antibody-positive at baseline. Both REGEN-COV doses reduced viral load faster than placebo; the least-squares mean difference in viral load from baseline through day 7 was -0.71 log10 copies per milliliter (95% confidence interval [CI], -0.90 to -0.53) in the 1200-mg group and -0.86 log10 copies per milliliter (95% CI, -1.00 to -0.72) in the 2400-mg group. Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200-mg group (1.1%) and the 2400-mg group (1.3%); infusion-related reactions of grade 2 or higher occurred in less than 0.3% of the patients in all groups. CONCLUSIONS: REGEN-COV reduced the risk of Covid-19-related hospitalization or death from any cause, and it resolved symptoms and reduced the SARS-CoV-2 viral load more rapidly than placebo. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04425629.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Adolescent , Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/mortality , Dose-Response Relationship, Drug , Double-Blind Method , Drug Combinations , Female , Hospitalization/statistics & numerical data , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Proportional Hazards Models , Viral Load/drug effects , Young Adult
12.
Ophthalmic Physiol Opt ; 41(5): 1076-1086, 2021 09.
Article in English | MEDLINE | ID: mdl-34382245

ABSTRACT

PURPOSE: Exposure to narrow-band red light, which stimulates only the long-wavelength sensitive (LWS) cones, slows axial eye growth and produces hyperopia in tree shrews and macaque monkeys. We asked whether exposure to amber light, which also stimulates only the LWS cones but with a greater effective illuminance than red light, has a similar hyperopia-inducing effect in tree shrews. METHODS: Starting at 24 ± 1 days of visual experience, 15 tree shrews (dichromatic mammals closely related to primates) received light treatment through amber filters (BPI 500/550 dyed acrylic) either atop the cage (Filter group, n = 8, 300-400 human lux) or fitted into goggles in front of both eyes (Goggle group, n = 7). Non-cycloplegic refractive error and axial ocular dimensions were measured daily. Treatment groups were compared with age-matched animals (Colony group, n = 7) raised in standard colony fluorescent lighting (100-300 lux). RESULTS: At the start of treatment, mean refractive errors were well-matched across the three groups (p = 0.35). During treatment, the Filter group became progressively more hyperopic with age (p < 0.001). By contrast, the Goggle and Colony groups showed continued normal emmetropization. When the treatment ended, the Filter group exhibited significantly greater hyperopia (mean [SE] = 3.5 [0.6] D) compared with the Goggle (0.2 [0.8] D, p = 0.01) and Colony groups (1.0 [0.2] D, p = 0.01). However, the refractive error in the Goggle group was not different from that in the Colony group (p = 0.35). Changes in the vitreous chamber were consistent with the refractive error changes. CONCLUSIONS: Exposure to ambient amber light produced substantial hyperopia in the Filter group but had no effect on refractive error in the Goggle group. The lack of effect in the Goggle group could be due to the simultaneous activation of the short-wavelength sensitive (SWS) and LWS cones caused by the scattering of the broad-band light from the periphery of the goggles.


Subject(s)
Hyperopia , Amber , Animals , Eye , Hyperopia/therapy , Light , Refraction, Ocular , Retinal Cone Photoreceptor Cells , Tupaiidae
13.
Cell ; 184(15): 3949-3961.e11, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34161776

ABSTRACT

Monoclonal antibodies against SARS-CoV-2 are a clinically validated therapeutic option against COVID-19. Because rapidly emerging virus mutants are becoming the next major concern in the fight against the global pandemic, it is imperative that these therapeutic treatments provide coverage against circulating variants and do not contribute to development of treatment-induced emergent resistance. To this end, we investigated the sequence diversity of the spike protein and monitored emergence of virus variants in SARS-COV-2 isolates found in COVID-19 patients treated with the two-antibody combination REGEN-COV, as well as in preclinical in vitro studies using single, dual, or triple antibody combinations, and in hamster in vivo studies using REGEN-COV or single monoclonal antibody treatments. Our study demonstrates that the combination of non-competing antibodies in REGEN-COV provides protection against all current SARS-CoV-2 variants of concern/interest and also protects against emergence of new variants and their potential seeding into the population in a clinical setting.


Subject(s)
Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/prevention & control , Mutation/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Cryoelectron Microscopy , Hospitalization , Humans , Lung/pathology , Lung/virology , Male , Neutralization Tests , Vero Cells , Viral Load
14.
J Vis ; 21(5): 11, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33984119

ABSTRACT

The postnatal growing eye uses visual cues to actively control its own axial elongation to achieve and maintain sharp focus, a process termed emmetropization. The primary visual cue may be the difference in image sharpness as sensed by the arrays of short- and long-wavelength sensitive cone photoreceptors caused by longitudinal chromatic aberration: Shorter wavelengths focus in front of longer wavelengths. However, the sparse distribution of short-wavelength sensitive cones across the retina suggests that they do not have sufficient spatial sampling resolution for this task. Here, we show that the spacing of the short-wavelength sensitive cones in humans is sufficient for them, in conjunction with the longer wavelength cones, to use chromatic signals to detect defocus and guide emmetropization. We hypothesize that the retinal spacing of the short-wavelength sensitive cones in many mammalian species is an evolutionarily ancient adaption that allows the efficient use of chromatic cues in emmetropization.


Subject(s)
Cues , Refraction, Ocular , Animals , Humans , Retina/diagnostic imaging , Retinal Cone Photoreceptor Cells
15.
Exp Eye Res ; 206: 108525, 2021 05.
Article in English | MEDLINE | ID: mdl-33711339

ABSTRACT

We asked if emmetropia, achieved in broadband colony lighting, is maintained in narrow-band cyan light that is well focused in the emmetropic eye, but does not allow for guidance from longitudinal chromatic aberrations (LCA) and offers minimal perceptual color cues. In addition, we examined the response to a -5 D lens in this lighting. Seven tree shrews from different litters were initially housed in broad-spectrum colony lighting. At 24 ± 1 days after eye opening (Days of Visual Experience, DVE) they were housed for 11 days in ambient narrow-band cyan light (peak wavelength 505 ± 17 nm) selected because it is in focus in an emmetropic eye. Perceptually, monochromatic light at 505 nm cannot be distinguished from white by tree shrews. While in cyan light, each animal wore a monocular -5 D lens (Cyan -5 D eyes). The fellow eye was the Cyan no-lens eye. Daily awake non-cycloplegic measures were taken with an autorefractor (refractive state) and with optical low-coherence optical interferometry (axial component dimensions). These measures were compared with the values of animals raised in standard colony fluorescent lighting: an untreated group (n = 7), groups with monocular form deprivation (n = 7) or monocular -5 D lens treatment (n = 5), or that experienced 10 days in total darkness (n = 5). Refractive state at the onset of cyan light treatment was low hyperopia, (mean ± SEM) 1.4 ± 0.4 diopters. During treatment, the Cyan no-lens eyes became myopic (-2.9 ± 0.3 D) whereas colony lighting animals remained slightly hyperopic (1.0 ± 0.2 D). Initially, refractions of the Cyan -5 D eyes paralleled the Cyan no-lens eyes. After six days, they gradually became more myopic than the Cyan no-lens eyes; at the end of treatment, the refractions were -5.4 ± 0.3 D, a difference of -2.5 D from the Cyan no-lens eyes. When returned to colony lighting at 35 ± 1 DVE, the no-lens eye refractions rapidly recovered towards emmetropia but, as expected, the refraction of the -5 D eyes remained near -5 D. Vitreous chamber depth in both eyes was consistent with the refractive changes. In narrow-band cyan lighting the emmetropization mechanism did not maintain emmetropia even though the light initially was well focused. We suggest that, as the eyes diverged from emmetropia, there were insufficient LCA cues for the emmetropization mechanism to utilize the developing myopic refractive error in order to guide the eyes back to emmetropia. However, the increased myopia in the Cyan -5 D eyes in the narrow-band light indicates that the emmetropization mechanism nonetheless detected the presence of the lens-induced refractive error and responded with increased axial elongation that partly compensated for the negative-power lens. These data support the conclusion that the emmetropization mechanism cannot maintain emmetropia in narrow-band lighting. The additional myopia produced in eyes with the -5 D lens shows that the emmetropization mechanism responds to multiple defocus-related cues, even under conditions where it is unable to use them to maintain emmetropia.


Subject(s)
Emmetropia/physiology , Light , Refractive Errors/physiopathology , Animals , Animals, Newborn , Disease Models, Animal , Tupaiidae
16.
N Engl J Med ; 384(3): 238-251, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33332778

ABSTRACT

BACKGROUND: Recent data suggest that complications and death from coronavirus disease 2019 (Covid-19) may be related to high viral loads. METHODS: In this ongoing, double-blind, phase 1-3 trial involving nonhospitalized patients with Covid-19, we investigated two fully human, neutralizing monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, used in a combined cocktail (REGN-COV2) to reduce the risk of the emergence of treatment-resistant mutant virus. Patients were randomly assigned (1:1:1) to receive placebo, 2.4 g of REGN-COV2, or 8.0 g of REGN-COV2 and were prospectively characterized at baseline for endogenous immune response against SARS-CoV-2 (serum antibody-positive or serum antibody-negative). Key end points included the time-weighted average change in viral load from baseline (day 1) through day 7 and the percentage of patients with at least one Covid-19-related medically attended visit through day 29. Safety was assessed in all patients. RESULTS: Data from 275 patients are reported. The least-squares mean difference (combined REGN-COV2 dose groups vs. placebo group) in the time-weighted average change in viral load from day 1 through day 7 was -0.56 log10 copies per milliliter (95% confidence interval [CI], -1.02 to -0.11) among patients who were serum antibody-negative at baseline and -0.41 log10 copies per milliliter (95% CI, -0.71 to -0.10) in the overall trial population. In the overall trial population, 6% of the patients in the placebo group and 3% of the patients in the combined REGN-COV2 dose groups reported at least one medically attended visit; among patients who were serum antibody-negative at baseline, the corresponding percentages were 15% and 6% (difference, -9 percentage points; 95% CI, -29 to 11). The percentages of patients with hypersensitivity reactions, infusion-related reactions, and other adverse events were similar in the combined REGN-COV2 dose groups and the placebo group. CONCLUSIONS: In this interim analysis, the REGN-COV2 antibody cocktail reduced viral load, with a greater effect in patients whose immune response had not yet been initiated or who had a high viral load at baseline. Safety outcomes were similar in the combined REGN-COV2 dose groups and the placebo group. (Funded by Regeneron Pharmaceuticals and the Biomedical and Advanced Research and Development Authority of the Department of Health and Human Services; ClinicalTrials.gov number, NCT04425629.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19 Drug Treatment , Immunologic Factors/therapeutic use , SARS-CoV-2/isolation & purification , Viral Load/drug effects , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Neutralizing/adverse effects , COVID-19/diagnosis , COVID-19/virology , Double-Blind Method , Drug Combinations , Female , Humans , Immunologic Factors/adverse effects , Least-Squares Analysis , Male , Middle Aged , Outpatients , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
17.
Mol Ther ; 28(8): 1795-1805, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32497512

ABSTRACT

Dendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model. Bone marrow-derived dendritic cells from SAMHD1 knockout mice were transduced with a lentiviral vector expressing the GP33 major-histocompatibility-complex (MHC)-class-I-restricted peptide epitope and CD40 ligand (CD40L) and injected into wild-type mice. The mice were highly protected against acute and chronic variant CL-13 LCMVs, resulting in a 100-fold greater decrease than that achieved with peptide epitope-pulsed dendritic cells. Inclusion of an MHC-class-II-restricted epitope in the lentiviral vector further increased the CD8 T cell response and resulted in antigen-specific CD8 T cells that exhibited a phenotype associated with functional cytotoxic T cells. The vaccination synergized with checkpoint blockade to reduce the viral load of mice chronically infected with CL-13 to an undetectable level. The strategy improves upon current dendritic cell vaccine strategies; is applicable to the treatment of disease, including AIDS and cancer; and supports the utility of Vpx-containing vectors.


Subject(s)
Dendritic Cells/drug effects , Dendritic Cells/immunology , Genetic Vectors , Immune Checkpoint Inhibitors/pharmacology , Lentivirus , Viral Vaccines/immunology , Virus Diseases/prevention & control , Animals , Biomarkers , Dendritic Cells/virology , Disease Models, Animal , Disease Susceptibility , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Histocompatibility Antigens Class II , Host-Pathogen Interactions/immunology , Humans , Lentivirus/genetics , Lymphocytic Choriomeningitis/prevention & control , Lymphocytic choriomeningitis virus/immunology , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Vaccines/administration & dosage , Virus Diseases/etiology , Virus Diseases/immunology
18.
Vision Res ; 173: 7-20, 2020 08.
Article in English | MEDLINE | ID: mdl-32445984

ABSTRACT

In post-natal developing eyes a feedback mechanism uses optical cues to regulate axial growth so as to achieve good focus, a process termed emmetropization. However, the optical cues that the feedback mechanism uses have remained unclear. Here we present evidence that a primary visual cue may be the detection of different image statistics by the short-wavelength sensitive (SWS) and long-wavelength sensitive (LWS) cone photoreceptors, caused by longitudinal chromatic aberration (LCA). We use as a model system the northern tree shrew Tupaia belangeri, diurnal cone-dominated dichromatic mammals closely related to primates. We present an optical model in which the SWS and LWS photoreceptors each represent an image at different levels of defocus. The model posits that an imbalance between SWS and LWS image statistics directs eye growth towards the point at which these image statistics are in balance. Under spectrally broadband ("white") lighting, the focus of the eye is driven to a target point approximately in the middle of the visible spectrum, which is emmetropia. Calculations suggest that the SWS cone array, despite the sparse number of SWS cones, can plausibly detect the wavelength-dependent differences in defocus and guide refractive development. The model is consistent with the effects of various narrow-band illuminants on emmetropization in tree shrews. Simulations suggest that common artificial light spectra do not interfere with emmetropization. Simulations also suggest that multi-spectral multi-focal lenses, where the different optical zones of a multifocal lens have different spectral filtering properties, could be an anti-myopia intervention.


Subject(s)
Color Vision/physiology , Emmetropia/physiology , Retinal Cone Photoreceptor Cells/physiology , Animals , Axial Length, Eye , Hyperopia/physiopathology , Lighting , Models, Animal , Myopia/physiopathology , Refraction, Ocular , Tupaiidae
19.
Mol Vis ; 25: 311-328, 2019.
Article in English | MEDLINE | ID: mdl-31341380

ABSTRACT

Purpose: In juvenile tree shrews that have developed minus lens-induced myopia, if lens treatment is discontinued, refractive recovery (REC) occurs. However, in age-matched juvenile animals, plus-lens wear (PLW) produces little refractive change, although the visual stimulus (myopia) is similar (an "IGNORE" response). Because the sclera controls axial elongation and refractive error, we examined gene expression in the sclera produced by PLW and compared it with the gene expression signature produced by REC to learn whether these similar refractive conditions produce similar, or differing, scleral responses. Methods: Eight groups of tree shrews (n = 7 per group) were examined. Four groups wore a monocular -5 D lens for 11 days until 35 days of visual experience (DVE). Lens wear was then discontinued, and the animals recovered for 0 h (REC-0), 2 h (REC-2h), 1 day (REC-1d), or 4 days (REC-4d). Starting at 35 DVE, three groups wore a monocular +5 D lens for 2 h (PLW-2h), 1 day (PLW-1d), or 4 days (PLW-4d). A normal group (PLW-0) was examined at 38 DVE to provide baseline measures. Using quantitative real-time PCR (qPCR), we examined scleral mRNA levels in recovering, plus-lens treated, and untreated control eyes for 55 candidate genes whose protein products included signaling molecules, metallopeptidases (MPs) and their inhibitors (tissue inhibitors of metallopeptidases [TIMPs]), and extracellular matrix proteins. Results: No refractive recovery was measured in the REC-2h group. The scleral mRNA expression pattern for recovering versus untreated control eyes after 2 h of recovery was similar to that found for the group (REC-0) that had no recovery time. Many genes in both groups still had downregulated expression in the treated eyes versus the control eyes. The REC-1d group showed little refractive recovery (0.1 ± 0.1 D, mean ± standard error of the mean [SEM]), and the mRNA expression pattern was similar to that of the REC-2h group, but had fewer statistically significantly downregulated genes in the recovering eyes. The REC-4d group recovered refractively by 2.6 ± 0.4 D, and displayed a "STOP" gene expression signature of mostly upregulated mRNA expression in the recovering eyes compared with the untreated control eyes. The PLW-0 (normal) group and the PLW-2h group showed no statistically significant differential gene expression. The PLW-1d group showed a small hyperopic shift (0.1 ± 0.2 D). Two genes were differentially expressed: NPR3 was upregulated in the plus lens-wearing eyes, and IGF1 was downregulated. The PLW-4d group showed a similar hyperopic shift (0.3 ± 0.4 D), confirming that the plus lens-induced 5 D of myopia produced little refractive change. In the sclera, there was an IGNORE pattern of general differential upregulation of genes in the treated eyes (22 upregulated, one downregulated) that was distinct from the STOP signature found in recovery. Ten genes were upregulated in the REC-4d group and the PLW-4d group. However, ten other genes were differentially expressed in recovery, but not in plus-lens wear, while 12 genes were differentially expressed in plus-lens wear but not in recovery. Conclusions: One day of recovery is not long enough for the emmetropization mechanism to produce significant gene expression changes in the sclera or refractive recovery. After 4 days, recovery and plus-lens wear produced altered scleral gene expression, but the patterns ("signatures") differed as to which genes showed altered expression, and whether the gene expression was up- or downregulated. Thus, myopia produced altered scleral mRNA expression in recovery and plus-lens wear, confirming that signals initiated by the retina reached the sclera, but the sclera in the elongated recovering eye responded differently from a normal sclera. This might have occurred because the recovering-eye sclera had remodeled during minus-lens compensation, making the sclera respond differently to the signals initiated by the retina. However, the myopia-produced retinal signals in plus lens-wearing animals also may have differed from those in the recovering eyes by the time the signals passed through the RPE and choroid to reach the sclera.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Lenses, Intraocular , Sclera/metabolism , Tupaiidae/genetics , Animals , Disease Models, Animal , Myopia/genetics , Refraction, Ocular , Sclera/physiopathology
20.
Exp Eye Res ; 185: 107683, 2019 08.
Article in English | MEDLINE | ID: mdl-31158381

ABSTRACT

Tree shrews are small mammals with excellent vision and are closely related to primates. They have been used extensively as a model for studying refractive development, myopia, and central visual processing and are becoming an important model for vision research. Their cone dominant retina (∼95% cones) provides a potential avenue to create new damage/disease models of human macular pathology and to monitor progression or treatment response. To continue the development of the tree shrew as an animal model, we provide here the first measurements of higher order aberrations along with adaptive optics scanning light ophthalmoscopy (AOSLO) images of the photoreceptor mosaic in the tree shrew retina. To compare intra-animal in vivo and ex vivo cone density measurements, the AOSLO images were matched to whole-mount immunofluorescence microscopy. Analysis of the tree shrew wavefront indicated that the optics are well-matched to the sampling of the cone mosaic and is consistent with the suggestion that juvenile tree shrews are nearly emmetropic (slightly hyperopic). Compared with in vivo measurements, consistently higher cone density was measured ex vivo, likely due to tissue shrinkage during histological processing. Tree shrews also possess massive mitochondria ("megamitochondria") in their cone inner segments, providing a natural model to assess how mitochondrial size affects in vivo retinal imagery. Intra-animal in vivo and ex vivo axial distance measurements were made in the outer retina with optical coherence tomography (OCT) and transmission electron microscopy (TEM), respectively, to determine the origin of sub-cellular cone reflectivity seen on OCT. These results demonstrate that these megamitochondria create an additional hyper-reflective outer retinal reflective band in OCT images. The ability to use noninvasive retinal imaging in tree shrews supports development of this species as a model of cone disorders.


Subject(s)
Corneal Wavefront Aberration/physiopathology , Refractive Errors/physiopathology , Retina/diagnostic imaging , Retinal Cone Photoreceptor Cells/cytology , Aberrometry , Animals , Cell Count , Microscopy, Electron, Transmission , Ophthalmoscopy , Optical Imaging , Refraction, Ocular/physiology , Retina/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Tomography, Optical Coherence/methods , Tupaia
SELECTION OF CITATIONS
SEARCH DETAIL
...