Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Environ Int ; 186: 108583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521046

ABSTRACT

BACKGROUND: Wildfires in the Western United States are a growing and significant source of air pollution that is eroding decades of progress in air pollution reduction. The effects on preterm birth during critical periods of pregnancy are unknown. METHODS: We assessed associations between prenatal exposure to wildland fire smoke and risk of preterm birth (gestational age < 37 weeks). We assigned smoke exposure to geocoded residence at birth for all live singleton births in California conceived 2007-2018, using weekly average concentrations of particulate matter ≤ 2.5 µm (PM2.5) attributable to wildland fires from United States Environmental Protection Agency's Community Multiscale Air Quality Model. Logistic regression yielded odds ratio (OR) for preterm birth in relation to increases in average exposure across the whole pregnancy, each trimester, and each week of pregnancy. Models adjusted for season, age, education, race/ethnicity, medical insurance, and smoking of the birthing parent. RESULTS: For the 5,155,026 births, higher wildland fire PM2.5 exposure averaged across pregnancy, or any trimester, was associated with higher odds of preterm birth. The OR for an increase of 1 µg/m3 of average wildland fire PM2.5 during pregnancy was 1.013 (95 % CI:1.008,1.017). Wildland fire PM2.5 during most weeks of pregnancy was associated with higher odds. Strongest estimates were observed in weeks in the second and third trimesters. A 10 µg/m3 increase in average wildland fire PM2·5 in gestational week 23 was associated with OR = 1.034; 95 % CI: 1.019, 1.049 for preterm birth. CONCLUSIONS: Preterm birth is sensitive to wildland fire PM2.5; therefore, we must reduce exposure during pregnancy.


Subject(s)
Air Pollutants , Maternal Exposure , Particulate Matter , Premature Birth , Smoke , Wildfires , Female , Pregnancy , Humans , Premature Birth/epidemiology , California/epidemiology , Particulate Matter/analysis , Adult , Maternal Exposure/statistics & numerical data , Smoke/analysis , Smoke/adverse effects , Air Pollutants/analysis , Wildfires/statistics & numerical data , Young Adult , Air Pollution/statistics & numerical data , Infant, Newborn
2.
PLoS One ; 18(11): e0293533, 2023.
Article in English | MEDLINE | ID: mdl-37934737

ABSTRACT

Residents of carceral facilities are exposed to poor ventilation conditions which leads to the spread of communicable diseases such as COVID-19. Indoor ventilation conditions are rarely studied within carceral settings and there remains limited capacity to develop solutions to address the impact of poor ventilation on the health of people who are incarcerated. In this study, we empirically measured ventilation rates within housing units of six adult prisons in the California Department of Corrections and Rehabilitation (CDCR) and compare the measured ventilation rates to recommended standards issued by the World Health Organization (WHO). Findings from the empirical assessment include lower ventilation rates than the recommended ventilation standards with particularly low ventilation during winter months when heating systems were in use. Inadvertent airflows from spaces housing potentially infected individuals to shared common spaces was also observed. The methodology used for this work can be leveraged for routine ventilation monitoring, pandemic preparedness, and disaster response.


Subject(s)
Air Pollution, Indoor , COVID-19 , Adult , Humans , COVID-19/epidemiology , Ventilation , Respiration , Prisons , Disease Outbreaks , California/epidemiology
3.
Am J Ind Med ; 66(4): 307-319, 2023 04.
Article in English | MEDLINE | ID: mdl-36748848

ABSTRACT

BACKGROUND: Former workers at a Southern aluminum smelting facility raised concerns that the most hazardous jobs were assigned to Black workers, but the role of workplace segregation had not been quantified or examined in the company town. Prior studies discuss race and gender disparities in working conditions, but few have documented them in the aluminum industry. METHODS: We obtained workers' company records for 1985-2007 and characterized four job metrics: prestige (sociologic rankings), worker-defined danger (worker assessments), annual wage (1985 dollars), and estimated total particulate matter (TPM) exposure (job exposure matrix). Characteristics of job at hire and trajectories were compared by race and sex using linear binomial models. RESULTS: Non-White males had the highest percentage of workers in low prestige and high danger jobs at hire and up to 20 years after. After 20 years tenure, 100% of White workers were in higher prestige and lower danger jobs. Most female workers, regardless of race, entered and remained in low-wage jobs, while 50% of all male workers maintained their initial higher-wage jobs. Non-White females had the highest prevalence of workers in low-wage jobs at hire and after 20 years-increasing from 63% (95% CI: 59-67) to 100% (95% CI: 78-100). All female workers were less likely to be in high TPM exposure jobs. Non-White males were most likely to be hired into high TPM exposure jobs, and this exposure prevalence increased as time accrued, while staying constant for other race-sex groups. CONCLUSIONS: There is evidence of job segregation by race and sex in this cohort of aluminum smelting workers. Documentation of disparities in occupational hazards is important for informing health interventions and research.


Subject(s)
Aluminum , Occupational Exposure , Humans , Male , Female , Occupations , Industry , Workplace , Particulate Matter , Occupational Exposure/analysis
4.
Environ Res ; 222: 115415, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36738772

ABSTRACT

BACKGROUND: Evidence in the literature suggests that air pollution exposures experienced prenatally and early in life can be detrimental to normal lung development, however the specific timing of critical windows during development is not fully understood. OBJECTIVES: We evaluated air pollution exposures during the prenatal and early-life period in association with lung function at ages 6-9, in an effort to identify potentially influential windows of exposure for lung development. METHODS: Our study population consisted of 222 children aged 6-9 from the Fresno-Clovis metro area in California with spirometry data collected between May 2015 and May 2017. We used distributed-lag non-linear models to flexibly model the exposure-lag-response for monthly average exposure to fine particulate matter (PM2.5) and ozone (O3) during the prenatal months and first three years of life in association with forced vital capacity (FVC), and forced expiratory volume in the first second (FEV1), adjusted for covariates. RESULTS: PM2.5 exposure during the prenatal period and the first 3-years of life was associated with lower FVC and FEV1 assessed at ages 6-9. Specifically, an increase from the 5th percentile of the observed monthly average exposure (7.55 µg/m3) to the median observed exposure (12.69 µg/m3) for the duration of the window was associated with 0.42 L lower FVC (95% confidence interval (CI): -0.82, -0.03) and 0.38 L lower FEV1 (95% CI: -0.75, -0.02). The shape of the lag-response indicated that the second half of pregnancy may be a particularly influential window of exposure. Associations for ozone were not as strong and typically CIs included the null. CONCLUSIONS: Our findings indicate that prenatal and early-life exposures to PM2.5 are associated with decreased lung function later in childhood. Exposures during the latter months of pregnancy may be especially influential.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Pregnancy , Female , Humans , Child , Child, Preschool , Air Pollutants/analysis , Environmental Exposure , Lung , Particulate Matter/analysis
5.
Clin Epigenetics ; 14(1): 40, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35287715

ABSTRACT

BACKGROUND: Ambient air pollutant (AAP) exposure is associated with adverse pregnancy outcomes, such as preeclampsia, preterm labor, and low birth weight. Previous studies have shown methylation of immune genes associate with exposure to air pollutants in pregnant women, but the cell-mediated response in the context of typical pregnancy cell alterations has not been investigated. Pregnancy causes attenuation in cell-mediated immunity with alterations in the Th1/Th2/Th17/Treg environment, contributing to maternal susceptibility. We recruited women (n = 186) who were 20 weeks pregnant from Fresno, CA, an area with chronically elevated AAP levels. Associations of average pollution concentration estimates for 1 week, 1 month, 3 months, and 6 months prior to blood draw were associated with Th cell subset (Th1, Th2, Th17, and Treg) percentages and methylation of CpG sites (IL4, IL10, IFNγ, and FoxP3). Linear regression models were adjusted for weight, age, season, race, and asthma, using a Q value as the false-discovery-rate-adjusted p-value across all genes. RESULTS: Short-term and mid-term AAP exposures to fine particulate matter (PM2.5), nitrogen dioxide (NO2) carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAH456) were associated with percentages of immune cells. A decrease in Th1 cell percentage was negatively associated with PM2.5 (1 mo/3 mo: Q < 0.05), NO2 (1 mo/3 mo/6 mo: Q < 0.05), and PAH456 (1 week/1 mo/3 mo: Q < 0.05). Th2 cell percentages were negatively associated with PM2.5 (1 week/1 mo/3 mo/6 mo: Q < 0.06), and NO2 (1 week/1 mo/3 mo/6 mo: Q < 0.06). Th17 cell percentage was negatively associated with NO2 (3 mo/6 mo: Q < 0.01), CO (1 week/1 mo: Q < 0.1), PM2.5 (3 mo/6 mo: Q < 0.05), and PAH456 (1 mo/3 mo/6 mo: Q < 0.08). Methylation of the IL10 gene was positively associated with CO (1 week/1 mo/3 mo: Q < 0.01), NO2 (1 mo/3 mo/6 mo: Q < 0.08), PAH456 (1 week/1 mo/3 mo: Q < 0.01), and PM2.5 (3 mo: Q = 0.06) while IL4 gene methylation was positively associated with concentrations of CO (1 week/1 mo/3 mo/6 mo: Q < 0.09). Also, IFNγ gene methylation was positively associated with CO (1 week/1 mo/3 mo: Q < 0.05) and PAH456 (1 week/1 mo/3 mo: Q < 0.06). CONCLUSION: Exposure to several AAPs was negatively associated with T-helper subsets involved in pro-inflammatory and anti-inflammatory responses during pregnancy. Methylation of IL4, IL10, and IFNγ genes with pollution exposure confirms previous research. These results offer insights into the detrimental effects of air pollution during pregnancy, the demand for more epigenetic studies, and mitigation strategies to decrease pollution exposure during pregnancy.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/adverse effects , DNA Methylation , Environmental Exposure/adverse effects , Female , Humans , Infant, Newborn , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-4/genetics , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Pregnancy , Pregnancy Outcome
6.
J Expo Sci Environ Epidemiol ; 32(4): 530-537, 2022 07.
Article in English | MEDLINE | ID: mdl-34417545

ABSTRACT

BACKGROUND: Previous research has revealed links between air pollution exposure and metabolic syndrome in adults; however, these associations are less explored in children. OBJECTIVE: This study aims to investigate the association between traffic-related air pollutants (TRAP) and biomarkers of metabolic dysregulation, oxidative stress, and lung epithelial damage in children. METHODS: We conducted cross-sectional analyses in a sample of predominantly Latinx, low-income children (n = 218) to examine associations between air pollutants (nitrogen dioxide (NO2), nitrogen oxides (NOx), elemental carbon, polycyclic aromatic hydrocarbons, carbon monoxide (CO), fine particulates (PM2.5)) and biomarkers of metabolic function (high-density lipoprotein (HDL), hemoglobin A1c (HbA1c), oxidative stress (8-isoprostane), and lung epithelial damage (club cell protein 16 (CC16)). RESULTS: HDL cholesterol showed an inverse association with NO2 and NOx, with the strongest relationship between HDL and 3-month exposure to NO2 (-15.4 mg/dL per IQR increase in 3-month NO2, 95% CI = -27.4, -3.4). 8-isoprostane showed a consistent pattern of increasing values with 1-day and 1-week exposure across all pollutants. Non-significant increases in % HbA1c were found during 1-month time frames and decreasing CC16 in 3-month exposure time frames. CONCLUSION: Our results suggest that TRAP is significantly associated with decreased HDL cholesterol in longer-term time frames and elevated 8-isoprostane in shorter-term time frames. TRAP could have the potential to influence lifelong metabolic patterns, through metabolic effects in childhood.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Biomarkers/analysis , Child , Cholesterol, HDL/analysis , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Glycated Hemoglobin/analysis , Humans , Nitrogen Dioxide/analysis , Oxidative Stress , Particulate Matter/adverse effects , Particulate Matter/analysis , Uteroglobin/analysis , Vehicle Emissions/analysis
7.
Thorax ; 77(12): 1237-1242, 2022 12.
Article in English | MEDLINE | ID: mdl-34949724

ABSTRACT

BACKGROUND: Air pollution exposure is associated with disease severity, progression and mortality in patients with idiopathic pulmonary fibrosis (IPF). Combined impacts of environmental and socioeconomic factors on outcomes in patients with IPF are unknown. The objectives of this study were to characterise the relationships between relative environmental and social disadvantage with clinical outcomes in patients with IPF. METHODS: Patients with IPF were identified from a longitudinal database at University of California, San Francisco. Residential addresses were geocoded and linked to the CalEnviroScreen 3.0 (CES), a tool that quantifies environmental burden in California communities, combining population, environmental and pollution vulnerability into individual and composite scores (higher scores indicating greater disadvantage). Unadjusted and adjusted linear and logistic regression and Fine and Gray proportional hazards models were used. RESULTS: 603 patients were included. Higher CES was associated with lower baseline forced vital capacity ( ß =-0.073, 95% CI -0.13 to -0.02; p=0.006) and diffusion capacity of the lung for carbon monoxide ( ß =-0.11, 95% CI -0.16 to -0.06; p<0.001). Patients in the highest population vulnerability quartile were less likely to be on antifibrotic therapy (OR=0.33; 95% CI 0.18 to 0.60; p=0.001) at time of enrolment, compared with those in the lowest quartile. An association between CES and mortality was suggested, but sensitivity analyses demonstrated inconsistent results. Relative disadvantage of the study cohort appeared lower compared with the general population. CONCLUSIONS: Higher environmental exposures and vulnerability were associated with lower baseline lung function and lower antifibrotic use, suggesting that relative socioenvironmental disadvantage has meaningful impacts on patients with IPF.


Subject(s)
Air Pollution , Idiopathic Pulmonary Fibrosis , Humans , Vital Capacity , Lung , Proportional Hazards Models , Air Pollution/adverse effects
8.
Environ Res ; 195: 110870, 2021 04.
Article in English | MEDLINE | ID: mdl-33587949

ABSTRACT

BACKGROUND: Metabolic syndrome increases the risk of cardiovascular disease in adults. Antecedents likely begin in childhood and whether childhood exposure to air pollution plays a contributory role is not well understood. OBJECTIVES: To assess whether children's exposure to air pollution is associated with markers of risk for metabolic syndrome and oxidative stress, a hypothesized mediator of air pollution-related health effects. METHODS: We studied 299 children (ages 6-8) living in the Fresno, CA area. At a study center visit, questionnaire and biomarker data were collected. Outcomes included hemoglobin A1c (HbA1c), urinary 8-isoprostane, systolic blood pressure (SBP), and BMI. Individual-level exposure estimates for a set of four pollutants that are constituents of traffic-related air pollution (TRAP) - the sum of 4-, 5-, and 6-ring polycyclic aromatic hydrocarbon compounds (PAH456), NO2, elemental carbon, and fine particulate matter (PM2.5) - were modeled at the primary residential location for 1-day lag, and 1-week, 1-month, 3-month, 6-month, and 1-year averages prior to each participant's visit date. Generalized additive models were used to estimate associations between each air pollutant exposure and outcome. RESULTS: The study population was 53% male, 80% Latinx, 11% Black and largely low-income (6% were White and 3% were Asian/Pacific Islander). HbA1c percentage was associated with longer-term increases in TRAP; for example a 4.42 ng/m3 increase in 6-month average PAH456 was associated with a 0.07% increase (95% CI: 0.01, 0.14) and a 3.62 µg/m3 increase in 6-month average PM2.5 was associated with a 0.06% increase (95% CI: 0.01, 0.10). The influence of air pollutants on blood pressure was strongest at 3 months; for example, a 6.2 ppb increase in 3-month average NO2 was associated with a 9.4 mmHg increase in SBP (95% CI: 2.8, 15.9). TRAP concentrations were not significantly associated with anthropometric or adipokine measures. Short-term TRAP exposure averages were significantly associated with creatinine-adjusted urinary 8-isoprostane. DISCUSSION: Our results suggest that both short- and longer-term estimated individual-level outdoor residential exposures to several traffic-related air pollutants, including ambient PAHs, are associated with biomarkers of risk for metabolic syndrome and oxidative stress in children.


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Blood Pressure , Child , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Glucose , Humans , Male , Oxidative Stress , Particulate Matter/analysis , Particulate Matter/toxicity
9.
Sci Rep ; 11(1): 4067, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603036

ABSTRACT

Ambient air pollution exposure is associated with cardiovascular dysregulation and immune system alterations, yet no study has investigated both simultaneously in children. Understanding the multifaceted impacts may provide early clues for clinical intervention prior to actual disease presentation. We therefore determined the associations between exposure to multiple air pollutants and both immunological outcomes (methylation and protein expression of immune cell types associated with immune regulation) and cardiovascular outcomes (blood pressure) in a cohort of school-aged children (6-8 years; n = 221) living in a city with known elevated pollution levels. Exposure to fine particular matter (PM2.5), carbon monoxide (CO), and ozone (O3) was linked to altered methylation of most CpG sites for genes Foxp3, IL-4, IL-10 and IFN-g, all involved in immune regulation (e.g. higher PM2.5 exposure 1 month prior to the study visit was independently associated with methylation of the IL-4 CpG24 site (est = 0.16; P = 0.0095). Also, immune T helper cell types (Th1, Th2 and Th17) were associated with short-term exposure to PM2.5, O3 and CO (e.g. Th1 cells associated with PM2.5 at 30 days: est = - 0.34, P < 0.0001). Both B cells (est = - 0.19) and CD4+ cells (est = 0.16) were associated with 1 day NO2 exposure (P ≤ 0.031), whereas CD4+ and CD8+ cells were associated with chronic exposure to PAH456, NOx and/or NO2 (P ≤ 0.038 for all). Finally, diastolic BP (DBP) was inversely associated with long-term exposures to both CO and PAH456, and both systolic and pulse pressure were associated with short-term NO2 and chronic NOx exposure. Our findings demonstrate links between air pollution exposure and methylation of immunoregulatory genes, immune cell profiles and blood pressure, suggesting that even at a young age, the immune and cardiovascular systems are negatively impacted by exposure to air pollution.


Subject(s)
Air Pollution/adverse effects , Blood Pressure/drug effects , CpG Islands/drug effects , DNA Methylation/drug effects , Inhalation Exposure/adverse effects , T-Lymphocytes, Helper-Inducer/drug effects , Air Pollution/statistics & numerical data , California , Carbon Monoxide/adverse effects , Child , CpG Islands/genetics , Female , Forkhead Transcription Factors/genetics , Humans , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-4/genetics , Male , Ozone/adverse effects , Particulate Matter/adverse effects , Urban Population
10.
Atmos Environ (1994) ; 2422020 Dec 01.
Article in English | MEDLINE | ID: mdl-32982565

ABSTRACT

As part of our ongoing research to understand the impact of polycyclic aromatic hydrocarbon (PAH) exposures on health in the San Joaquin Valley, we evaluated airborne PAH concentration data collected over 19 years (2000-2019) at the central air monitoring site in Fresno, California. We found a dramatic decline in outdoor airborne PAH concentrations between 2000 and 2004 that has been maintained through 2019. This decline was present in both the continuous particle-bound PAHs and the filter-based individual PAHs. The decline was more extreme when restricted to winter concentrations. Annual mean PAHs concentrations in 2017- 2018 of particle-bound PAHs were 6.8 ng/m3 or 62% lower than 2000 - 2001. The decline for winter concentrations of continuous particle-bound PAHs between winter 2019 and winter 2001 was 17.2 ng/m3, a drop of 70%. The 2001 to 2018 decline in average wintertime concentrations for filter-based individual PAHs was 82%. We examined industrial emissions, on-road vehicle emissions, residential wood burning, and agricultural and biomass waste burning as possible explanations. The major decline in PAHs from 2000-2004 was coincident with and most likely due to a similar decline in the amount of agricultural and biomass waste burned in Fresno and Madera Counties. On-road vehicle emissions and residential wood burning did not decline until after 2005. Industrial emissions were too low (2% of total) to explain such large decreases in PAH concentrations.

11.
Occup Environ Med ; 76(12): 888-894, 2019 12.
Article in English | MEDLINE | ID: mdl-31615860

ABSTRACT

OBJECTIVE: Occupational dust exposure has been associated with accelerated lung function decline, which in turn is associated with overall morbidity and mortality. In the current study, we assess potential benefits on lung function of hypothetical interventions that would reduce occupational exposure to fine particulate matter (PM2.5) while adjusting for the healthy worker survivor effect. METHODS: Analyses were performed in a cohort of 6485 hourly male workers in an aluminium manufacturing company in the USA, followed between 1996 and 2013. We used the parametric g-formula to assess lung function decline over time under hypothetical interventions while also addressing time-varying confounding by underlying health status, using a composite risk score based on health insurance claims. RESULTS: A counterfactual scenario envisioning a limit on exposure equivalent to the 10th percentile of the observed exposure distribution of 0.05 mg/m3 was associated with an improvement in forced expiratory volume in one second (FEV1) equivalent to 37.6 mL (95% CI 13.6 to 61.6) after 10 years of follow-up when compared with the observed. Assuming a linear decrease and (from NHANES reference values), a 20 mL decrease per year for a 1.8 m-tall man as they age, this 37.6 mL FEV1 loss over 10 years associated with observed exposure would translate to approximately a 19% increase to the already expected loss per year from age alone. CONCLUSIONS: Our results indicate that occupational PM2.5 exposure in the aluminium industry accelerates lung function decline over age. Reduction in exposure may mitigate accelerated loss of lung function over time in the industry.


Subject(s)
Aluminum/toxicity , Inhalation Exposure/adverse effects , Lung Diseases/physiopathology , Occupational Diseases/physiopathology , Occupational Exposure/adverse effects , Particulate Matter/toxicity , Adult , Dust/analysis , Humans , Lung Diseases/etiology , Male , Manufacturing Industry , Occupational Diseases/etiology , Respiratory Function Tests , United States
12.
J Occup Environ Hyg ; 16(11): 735-744, 2019 11.
Article in English | MEDLINE | ID: mdl-31545144

ABSTRACT

Wildland firefighters engaged in fire suppression activities are often exposed to hazardous air pollutants such as polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM2.5) during wildfires with no respiratory protection. Although the most significant exposures to smoke likely occur on the fireline, wildland firefighters may also be exposed at the incident command post (ICP), an area designated for wildfire suppression support operations. Our objective was to characterize exposures of PAHs and PM2.5 near an ICP during a wildfire event in California. We collected area air samples for PAHs and PM2.5, during the first 12 days of a wildfire event. PAH area air samples were actively collected in 12-hr shifts (day and night) using XAD4-coated quartz fiber filters and XAD2 sorbent tubes and analyzed for 17 individual PAHs. Hourly area PM2.5 concentrations were measured with an Environmental Beta Attenuation Monitor. Most PAH concentrations generally had similar concentrations during the day and night. PM2.5 concentrations were higher during the day, due to increased fire activity, than at night. The highest concentrations of the 17 PAHs measured were for naphthalene, phenanthrene, and retene. The location of an ICP may be a critical factor in reducing these potential exposures to firefighters during wildfire events. Additionally, exposures could be reduced by utilizing clean air tents or sleeping trailers with HEPA filtration or setting up smaller camps in less smokey areas closer to the fireline for firefighters. Although measured exposures to PAHs for firefighters from smoke are lower at an ICP, these exposures still contribute to the overall cumulative work exposures.


Subject(s)
Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods , Firefighters , Humans , Smoke/analysis , Wildfires
14.
Environ Sci Technol ; 52(19): 11267-11275, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30200753

ABSTRACT

Traditional methods for measuring personal exposure to fine particulate matter (PM2.5) are cumbersome and lack spatiotemporal resolution; methods that are time-resolved are limited to a single species/component of PM. To address these limitations, we developed an automated microenvironmental aerosol sampler (AMAS), capable of resolving personal exposure by microenvironment. The AMAS is a wearable device that uses a GPS sensor algorithm in conjunction with a custom valve manifold to sample PM2.5 onto distinct filter channels to evaluate home, school, and other (e.g., outdoors, in transit, etc.) exposures. Pilot testing was conducted in Fresno, CA where 25 high-school participants ( n = 37 sampling events) wore an AMAS for 48-h periods in November 2016. Data from 20 (54%) of the 48-h samples collected by participants were deemed valid and the filters were analyzed for PM2.5 black carbon (BC) using light transmissometry and aerosol oxidative potential (OP) using the dithiothreitol (DTT) assay. The amount of inhaled PM2.5 was calculated for each microenvironment to evaluate the health risks associated with exposure. On average, the estimated amount of inhaled PM2.5 BC (µg day-1) and OP [(µM min-1) day-1] was greatest at home, owing to the proportion of time spent within that microenvironment. Validation of the AMAS demonstrated good relative precision (8.7% among collocated instruments) and a mean absolute error of 22% for BC and 33% for OP when compared to a traditional personal sampling instrument. This work demonstrates the feasibility of new technology designed to quantify personal exposure to PM2.5 species within distinct microenvironments.


Subject(s)
Air Pollutants , Environmental Monitoring , Aerosols , Carbon , Oxidative Stress , Particulate Matter
16.
Scand J Work Environ Health ; 44(5): 547-554, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29870045

ABSTRACT

Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3, respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (P<0.01). Sixty-two percent of jobs in smelting facilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.


Subject(s)
Manufacturing Industry/statistics & numerical data , Occupational Exposure/prevention & control , Particulate Matter , Respiratory Protective Devices/statistics & numerical data , Humans
17.
Chest ; 154(1): 119-125, 2018 07.
Article in English | MEDLINE | ID: mdl-29355549

ABSTRACT

BACKGROUND: Air pollution exposure is associated with acute exacerbation, disease progression, and mortality in patients with idiopathic pulmonary fibrosis (IPF). The objective of this study was to describe the impact of air pollution exposures on disease severity, as well as changes in lung function, in patients with IPF. METHODS: Using home spirometers and symptom diaries, 25 patients with IPF prospectively recorded FVC weekly for up to 40 weeks. Residential addresses were geocoded to estimate weekly mean air pollution exposures for ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter < 2.5 or 10 µm in aerodynamic diameter (PM2.5 and PM10, respectively). The dependence of weekly clinical measurements on preceding levels of each pollutant was assessed with the use of linear mixed models, yielding beta-coefficients with 95% CIs, using varying lag times. RESULTS: Lower mean FVC % predicted was consistently associated with increased mean exposures to PM10 in the 2 to 5 weeks preceding clinical measurements (range, -0.46 to -0.39 [95% CI, -0.73 to -0.13]; P < .005). Lower mean FVC % predicted over the study period was inversely related to mean levels of NO2 (-0.45 [95% CI, -0.85 to -0.05]; P = .03), PM2.5 (-0.45 [95% CI, -0.84 to -0.07]; P = .02), and PM10 (-0.57 [95% CI, -0.92 to -0.21]; P = .003), averaged over the study. Weekly changes in FVC and changes over 40 weeks were independent of pollution exposures. CONCLUSIONS: Higher air pollution exposures were associated with lower lung function, but not changes in lung function, in patients with IPF. Further studies are needed to characterize the mechanisms underlying this relationship.


Subject(s)
Air Pollution/adverse effects , Idiopathic Pulmonary Fibrosis/physiopathology , Respiratory Physiological Phenomena , Aged , California/epidemiology , Disease Progression , Female , Follow-Up Studies , Humans , Idiopathic Pulmonary Fibrosis/epidemiology , Idiopathic Pulmonary Fibrosis/etiology , Male , Morbidity/trends , Prognosis , Prospective Studies , Risk Factors , Spirometry , Time Factors
18.
Environ Sci Technol ; 51(11): 6461-6469, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28498656

ABSTRACT

Wildland firefighters suppressing wildland fires or conducting prescribed fires work long shifts during which they are exposed to high levels of wood smoke with no respiratory protection. Polycyclic aromatic hydrocarbons (PAHs) are hazardous air pollutants formed during incomplete combustion. Exposure to PAHs was measured for 21 wildland firefighters suppressing two wildland fires and 4 wildland firefighters conducting prescribed burns in California. Personal air samples were actively collected using XAD4-coated quartz fiber filters and XAD2 sorbent tubes. Samples were analyzed for 17 individual PAHs through extraction with dichloromethane and gas chromatograph-mass spectrometer analysis. Naphthalene, retene, and phenanthrene were consistently the highest measured PAHs. PAH concentrations were higher at wildland fires compared to prescribed fires and were highest for firefighters during job tasks that involve the most direct contact with smoke near an actively burning wildland fire. Although concentrations did not exceed current occupational exposure limits, wildland firefighters are exposed to PAHs not only on the fire line at wildland fires, but also while working prescribed burns and while off-duty. Characterization of occupational exposures from wildland firefighting is important to understand better any potential long-term health effects.


Subject(s)
Environmental Monitoring , Firefighters , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , California , Fires , Humans
19.
J Occup Environ Med ; 59(5): 446-452, 2017 05.
Article in English | MEDLINE | ID: mdl-28486341

ABSTRACT

OBJECTIVE: The main objective of this pilot study was to gather preliminary information about how telomere length (TL) varies in relation to exposure to polycyclic aromatic hydrocarbons (PAHs) in children living in a highly polluted city. METHODS: We conducted a cross-sectional study of children living in Fresno, California (n = 14). Subjects with and without asthma were selected based on their annual average PAH level in the 12-months prior to their blood draw. We measured relative telomere length from peripheral blood mononuclear cells (PBMC). RESULTS: We found an inverse linear relationship between average PAH level and TL (R = 0.69), as well as between age and TL (R = 0.21). Asthmatics had shorter mean telomere length than non-asthmatics (TLasthmatic = 1.13, TLnon-asthmatic = 1.29). CONCLUSIONS: These preliminary findings suggest that exposure to ambient PAH may play a role in telomere shortening.Become familiar with previous evidence suggesting that telomere length may be a biomarker of air pollution-induced cytotoxicity.Summarize the new findings on the association between polycyclic aromatic hydrocarbon (PAH) exposure and telomere length in adolescents, including those with asthma.Discuss the implications for recommendations and policies to mitigate the health and respiratory effects of traffic-related air pollution.


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Telomere Homeostasis/drug effects , Telomere Shortening/drug effects , Vehicle Emissions/toxicity , Adolescent , Air Pollution/statistics & numerical data , Asthma/physiopathology , California , Child , Cross-Sectional Studies , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Motor Vehicles , Pilot Projects
20.
PLoS One ; 11(6): e0156613, 2016.
Article in English | MEDLINE | ID: mdl-27249060

ABSTRACT

Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 µm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5.


Subject(s)
Aluminum , Industry , Myocardial Ischemia/chemically induced , Particulate Matter/toxicity , Cohort Studies , Humans , Occupational Exposure , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...