Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Aerosol Sci Technol ; 57(3): 215-232, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-37206373

ABSTRACT

SARS-CoV-2 spreads by infectious aerosols and droplets from the respiratory tract. Masks and respirators can reduce the transmission of infectious respiratory diseases by collecting these aerosols at the source. The ability of source control devices to block aerosols can be tested by expelling an aerosol through a headform using constant airflows, which are simpler, or cyclic airflows, which are more realistic but require more complex methods. Experiments with respirators found that using cyclic vs. constant flows affected the amount of aerosol inhaled, but similar comparisons have not been made for source control devices with exhaled aerosols. We measured the collection efficiencies for exhaled aerosols for two cloth masks, two medical masks with and without an elastic mask brace, a neck gaiter, and an N95 filtering facepiece respirator using 15 L/min and 85 L/min constant and cyclic flows and a headform with pliable skin. The collection efficiencies for the 15 L/min cyclic flow, 15 L/min constant flow, and 85 L/min constant flow were not significantly different in most cases. The apparent collection efficiencies for the 85 L/min cyclic flow were artificially increased by rebreathing and refiltration of the aerosol from the collection chamber. The collection efficiencies correlated well with the fit factors (ρ > 0.95) but not the filtration efficiencies (ρ < 0.54). Our results suggest that the aerosol collection efficiency measurements of source control devices are comparable when testing the devices using either constant or cyclic airflows and that the potential for aerosol rebreathing must be considered when conducting experiments.

2.
Pathogens ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678471

ABSTRACT

Understanding the host response to influenza A virus (IAV) infection is vital for developing intervention strategies. The primary barriers for invading respiratory pathogens are the respiratory tract epithelial cells and antimicrobial proteins generated by these cells. The antimicrobial peptide, ß-defensin-1, has antiviral activity against both enveloped and non-enveloped viruses. Significant downregulation of ß-defensin1 gene (DEFB1) expression was observed when human bronchial epithelial cells (HBEpCs) were exposed to IAV. HBEpCs overexpressing DEFB1 caused a significant reduction in IAV, that was confirmed by IAV matrix gene analysis, plaque assay, and confocal microscopy. DEFB1 expression after transfection with two micro RNAs (miRNAs), hsa-miR-186-5p and hsa-miR-340-5p, provided evidence that DEFB1 expression could be modulated by these miRNAs and hsa-miR-186-5p had a higher binding efficiency with DEFB1. Overexpression of DEFB1 in IAV-infected HBEpCs led to increased NF-κB expression. In a PCR array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of signal transducer and activator of transcription 3 (STAT3). In addition, Ingenuity Pathway Analysis (IPA) integrated with PCR array data showed that the JAK1/STAT3 pathway was significantly altered in cells overexpressing DEFB1, suggesting this to be one of the pathways by which defensin regulates IAV replication in HBEpCs. In conclusion, the reduction in IAV copy number in DEFB1 overexpressing cells suggests that ß-defensin-1 plays a key role in regulating IAV survival through STAT3 and is a potential target for antiviral drug development.

3.
Build Environ ; 229: 109920, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36569517

ABSTRACT

Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 µm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.

4.
Indoor Air ; 32(2): e12987, 2022 02.
Article in English | MEDLINE | ID: mdl-35225389

ABSTRACT

To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Masks , Physical Distancing , Ventilation , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2
5.
Am J Infect Control ; 50(2): 133-140, 2022 02.
Article in English | MEDLINE | ID: mdl-34924208

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited. METHODS: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system. RESULTS: Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols. CONCLUSIONS: Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols.


Subject(s)
COVID-19 , Masks , Aerosols , Humans , Pandemics , SARS-CoV-2
6.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34960804

ABSTRACT

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Subject(s)
Air Pollution, Indoor/prevention & control , Inhalation Exposure/prevention & control , Masks , Physical Distancing , Respiratory Aerosols and Droplets/virology , Ventilation , Air Conditioning , COVID-19/prevention & control , Humans , SARS-CoV-2/isolation & purification
7.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34237047

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Subject(s)
Air Conditioning/instrumentation , Air Filters , Air Pollution, Indoor/prevention & control , Masks , SARS-CoV-2 , Aerosols , Equipment Design , Humans , United States
8.
J Occup Environ Hyg ; 18(8): 409-422, 2021 08.
Article in English | MEDLINE | ID: mdl-34161193

ABSTRACT

Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m × 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-min mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.


Subject(s)
Cough , Exhalation , Aerosols , Cough/prevention & control , Humans , Masks , Respiration
9.
Viruses ; 13(6)2021 05 23.
Article in English | MEDLINE | ID: mdl-34071096

ABSTRACT

MicroRNAs (miRNAs) are essential regulators of gene expression in humans and can control pathogenesis and host-virus interactions. Notably, the role of specific host miRNAs during influenza virus infections are still ill-defined. The central goal of this study was to identify novel miRNAs and their target genes in response to influenza virus infections in airway epithelium. Human airway epithelial cells exposed to influenza A virus (IAV) induced several novel miRNAs that were identified using next-generation sequencing (NGS) and their target genes by biochemical methods. NGS analysis predicted forty-two RNA sequences as possible miRNAs based on computational algorithms. The expression patterns of these putative miRNAs were further confirmed using RT-PCR in human bronchial epithelial cells exposed to H1N1, H9N1(1P10), and H9N1 (1WF10) strains of influenza virus. A time-course study showed significant downregulation of put-miR-34 in H1N1 and put-miR-35 in H9N1(1P10)-infected cells, which is consistent with the NGS data. Additionally, put-miR-34 and put-miR-35 showed a high fold enrichment in an argonaute-immunoprecipitation assay compared to the controls, indicating their ability to form a complex with argonaute protein and RNA-induced silencing complex (RISC), which is a typical mode of action found with miRNAs. Our earlier studies have shown that the replication and survival of influenza virus is modulated by certain transcription factors such as NF-ĸB. To identify the target(s) of these putative miRNAs, we screened 84 transcription factors that have a role in viral pathogenesis. Cells transfected with mimic of the put-miR-34 showed a significant decrease in the expression of Signal Transducers and Activators of Transcription 3 (STAT3), whereas the inhibitor of put-miR-34 showed a significant increase in STAT3 expression and its phosphorylation. In addition, put-miR-34 had 76% homology to the untranslated region of STAT3. NGS and PCR array data submitted to the Gene Ontology project also predicted the role of transcription factors modulated by put-miR-34. Our data suggest that put-miR-34 may be a good target for antiviral therapy.


Subject(s)
Host-Pathogen Interactions/genetics , Influenza A virus/genetics , MicroRNAs/genetics , STAT Transcription Factors/genetics , Signal Transduction/genetics , A549 Cells , Bronchi/cytology , Cells, Cultured , Epithelial Cells/virology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A virus/classification , Influenza A virus/pathogenicity , MicroRNAs/classification , MicroRNAs/isolation & purification , Virus Replication
10.
Pathogens ; 10(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540650

ABSTRACT

MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1ß, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-ß. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1ß, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression.

11.
MMWR Morb Mortal Wkly Rep ; 70(7): 254-257, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33600386

ABSTRACT

Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.† Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks§ and medical procedure masks¶ fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask's edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver's exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver's exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention.


Subject(s)
COVID-19/prevention & control , Masks/standards , COVID-19/epidemiology , COVID-19/transmission , Centers for Disease Control and Prevention, U.S. , Humans , Masks/statistics & numerical data , United States/epidemiology
12.
medRxiv ; 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33619500

ABSTRACT

Universal mask wearing is recommended by the Centers for Disease Control and Prevention to help control the spread of COVID-19. Masks reduce the expulsion of respiratory aerosols (called source control) and offer some protection to the wearer. However, masks vary greatly in their designs and construction materials, and it is not clear which are most effective. Our study tested 15 reusable cloth masks (which included face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators as source control devices for aerosols ≤ 7 µm produced during simulated coughing and exhalation. These measurements were compared with the mask filtration efficiencies, airflow resistances, and fit factors. The source control collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. The filtration efficiencies of the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on an elastomeric manikin headform and 1.0 to 4.0 on human test subjects. The correlation coefficients between the source control efficacies and the other performance metrics ranged from 0.31 to 0.66 and were significant in all but one case. However, none of the alternative metrics were strong predictors of the source control performance of cloth masks. Our results suggest that a better understanding of the relationships between source control performance and metrics like filtration efficiency, airflow resistance, and fit factor are needed to develop simple methods to estimate the effectiveness of masks as source control devices for respiratory aerosols.

13.
Aerosol Sci Technol ; 55(10): 1125-1142, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-35923216

ABSTRACT

Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices. However, none of these metrics are direct measurements of how effectively a mask blocks coughed and exhaled aerosols. We studied the source control performance of 15 cloth masks (face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators by measuring their ability to block aerosols ≤ 7 µm expelled during simulated coughing and exhalation (called source control collection efficiency). These measurements were compared with filtration efficiencies, airflow resistances, and fit factors measured on manikin headforms and humans. Collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. Filtration efficiencies for the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on headforms and 1.0 to 4.0 on human subjects. The Spearman's rank correlation coefficients between the source control collection efficiencies and the standard metrics ranged from 0.03 to 0.68 and were significant in all but two cases. However, none of the standard metrics were strongly correlated with source control performance. A better understanding of the relationships between source control collection efficiency, filtration efficiency, airflow resistance, and fit factor is needed.

14.
Aerosol Sci Technol ; 55(4): 449-457, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-35924077

ABSTRACT

Face masks are recommended to reduce community transmission of SARS-CoV-2. One of the primary benefits of face masks and other coverings is as source control devices to reduce the expulsion of respiratory aerosols during coughing, breathing, and speaking. Face shields and neck gaiters have been proposed as an alternative to face masks, but information about face shields and neck gaiters as source control devices is limited. We used a cough aerosol simulator with a pliable skin headform to propel small aerosol particles (0 to 7 µm) into different face coverings. An N95 respirator blocked 99% (standard deviation (SD) 0.3%) of the cough aerosol, a medical grade procedure mask blocked 59% (SD 6.9%), a 3-ply cotton cloth face mask blocked 51% (SD 7.7%), and a polyester neck gaiter blocked 47% (SD 7.5%) as a single layer and 60% (SD 7.2%) when folded into a double layer. In contrast, the face shield blocked 2% (SD 15.3%) of the cough aerosol. Our results suggest that face masks and neck gaiters are preferable to face shields as source control devices for cough aerosols.

15.
PLoS One ; 15(12): e0244436, 2020.
Article in English | MEDLINE | ID: mdl-33373420

ABSTRACT

Healthcare workers concurrently may be at a higher risk of developing respiratory infections and allergic disease, such as asthma, than the general public. Increased incidence of allergic diseases is thought to be caused, in part, due to occupational exposure to chemicals that induce or augment Th2 immune responses. However, whether exposure to these chemical antimicrobials can influence immune responses to respiratory pathogens is unknown. Here, we use a BALB/c murine model to test if the Th2-promoting antimicrobial chemical triclosan influences immune responses to influenza A virus. Mice were dermally exposed to 2% triclosan for 7 days prior to infection with a sub-lethal dose of mouse adapted PR8 A(H1N1) virus (50 pfu); triclosan exposure continued until 10 days post infection (dpi). Infected mice exposed to triclosan did not show an increase in morbidity or mortality, and viral titers were unchanged. Assessment of T cell responses at 10 dpi showed a decrease in the number of total and activated (CD44hi) CD4+ and CD8+ T cells at the site of infection (BAL and lung) in triclosan exposed mice compared to controls. Influenza-specific CD4+ and CD8+ T cells were assessed using MHCI and MHCII tetramers, with reduced populations, although not reaching statistical significance at these sites following triclosan exposure. Reductions in the Th1 transcription factor T-bet were seen in both activated and tetramer+ CD4+ and CD8+ T cells in the lungs of triclosan exposed infected mice, indicating reduced Th1 polarization and providing a potential mechanism for numerical reduction in T cells. Overall, these results indicate that the immune environment induced by triclosan exposure has the potential to influence the developing immune response to a respiratory viral infection and may have implications for healthcare workers who may be at an increased risk for developing infectious diseases.


Subject(s)
Adaptive Immunity/drug effects , Health Personnel , Influenza, Human/immunology , Occupational Exposure/adverse effects , Th1 Cells/drug effects , Triclosan/adverse effects , Administration, Topical , Animals , Disease Models, Animal , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Th1 Cells/immunology , Triclosan/administration & dosage
17.
J Occup Environ Hyg ; 16(12): 804-816, 2019 12.
Article in English | MEDLINE | ID: mdl-31638865

ABSTRACT

The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0° (horizontal), 30°, and 60°, and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection.


Subject(s)
Aerosols/analysis , Ambulances , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Occupational Exposure/prevention & control , Ventilation/methods , Air Conditioning/methods , Cough , Emergency Medical Services , Humans , Respiratory Tract Infections/transmission
18.
J Occup Med Toxicol ; 14: 10, 2019.
Article in English | MEDLINE | ID: mdl-30949228

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations. As such, the outer shell barrier of turnout gear jackets may be an indirect transmission source and proper disinfection is essential to reduce the risk of exposure to fire fighters. Cleaning practices vary considerably among fire stations, and a method to assess disinfection of gear washed in commercial washer/extractors is needed. METHODS: Swatches (1 in. ×  1.5 in.) of the outer shell fabrics, Gemini™, Advance™, and Pioneer™, of turnout gear were inoculated with S. aureus, and washed with an Environmental Protection Agency-registered sanitizer commonly used to wash turnout gear. To initially assess the sanitizer, inoculated swatches were washed in small tubes according to the American Society for Testing Materials E2274 Protocol for evaluating laundry sanitizers. Inoculated swatches were also pinned to turnout gear jackets and washed in a Milnor commercial washer/extractor. Viable S. aureus that remained attached to fabric swatches after washing were recovered and quantified. Scanning Electron Microscopy was used to characterize the stages of S. aureus biofilm formation on the swatches that can result in resistance to disinfection. RESULTS: Disinfection in small tubes for only 10 s reduced the viability of S. aureus on Gemini™, Advance™, and Pioneer™ by 73, 99, and 100%, respectively. In contrast, disinfection of S. aureus-contaminated Gemini™ swatches pinned to turnout gear and washed in the washer/extractor was 99.7% effective. Scanning Electron Microscopy showed that biofilm formation begins as early as 5 h after attachment of S. aureus. CONCLUSION: This sanitizer and, likely, others containing the anti-microbial agent didecyl dimethyl ammonium chloride, is an effective disinfectant of S. aureus. Inclusion of contaminated outer shell swatches in the wash cycle affords a simple and quantitative method to assess sanitization of gear by commercial gear cleaning facilities. This methodology can be extended to assess for other bacterial contaminants. Sanitizer-resistant strains will continue to pose problems, and biofilm formation may affect the cleanliness of the washed turnout gear. Our methodology for assessing effectiveness of disinfection may help reduce the occupational exposure to fire fighters from bacterial contaminants.

19.
PLoS One ; 13(8): e0203223, 2018.
Article in English | MEDLINE | ID: mdl-30169507

ABSTRACT

INTRODUCTION: Healthcare personnel are at high risk for exposure to influenza by direct and indirect contact, droplets and aerosols, and by aerosol generating procedures. Information on air and surface influenza contamination is needed to assist in developing guidance for proper prevention and control strategies. To understand the vulnerabilities of healthcare personnel, we measured influenza in the breathing zone of healthcare personnel, in air and on surfaces within a healthcare setting, and on filtering facepiece respirators worn by healthcare personnel when conducting patient care. METHODS: Thirty participants were recruited from an adult emergency department during the 2015 influenza season. Participants wore personal bioaerosol samplers for six hours of their work shift, submitted used filtering facepiece respirators and medical masks and completed questionnaires to assess frequency and types of interactions with potentially infected patients. Room air samples were collected using bioaerosol samplers, and surface swabs were collected from high-contact surfaces within the adult emergency department. Personal and room bioaerosol samples, surface swabs, and filtering facepiece respirators were analyzed for influenza A by polymerase chain reaction. RESULTS: Influenza was identified in 42% (53/125) of personal bioaerosol samples, 43% (28/ 96) of room bioaerosol samples, 76% (23/30) of pooled surface samples, and 25% (3/12) of the filtering facepiece respirators analyzed. Influenza copy numbers were greater in personal bioaerosol samples (17 to 631 copies) compared to room bioaerosol samples (16 to 323 copies). Regression analysis suggested that the amount of influenza in personal samples was approximately 2.3 times the amount in room samples (Wald χ2 = 16.21, p<0.001). CONCLUSIONS: Healthcare personnel may encounter increased concentrations of influenza virus when in close proximity to patients. Occupations that require contact with patients are at an increased risk for influenza exposure, which may occur throughout the influenza season. Filtering facepiece respirators may become contaminated with influenza when used during patient care.


Subject(s)
Emergency Service, Hospital , Health Personnel , Influenza, Human , Occupational Exposure , Air Microbiology , Cross-Sectional Studies , Humans , Influenza A virus , Influenza, Human/transmission , Masks/virology , Respiratory Protective Devices/virology
20.
J Occup Environ Hyg ; 15(9): 664-675, 2018 09.
Article in English | MEDLINE | ID: mdl-30081757

ABSTRACT

Increased understanding of influenza transmission is critical for pandemic planning and selecting appropriate controls for healthcare personnel safety and health. The goals of this pilot study were to assess environmental contamination in different areas and at two time periods in the influenza season and to determine the feasibility of using surgical mask contamination to evaluate potential exposure to influenza virus. Bioaerosol samples were collected over 12 days (two 6-day sessions) at 12 locations within a student health center using portable two-stage bioaerosol samplers operating 8 hr each day. Surface samples were collected each morning and afternoon from common high-contact non-porous hard surfaces from rooms and locations where bioaerosol samplers were located. Surgical masks worn by participants while in contact with patients with influenza-like illness were collected. A questionnaire administered to each of the 12 participants at the end of each workday and another at the end of each workweek assessed influenza-like illness symptoms, estimated the number of influenza-like illness patient contacts, hand hygiene, and surgical mask usage. All samples were analyzed using qPCR. Over the 12 days of the study, three of the 127 (2.4%) bioaerosol samples, 2 of 483 (0.41%) surface samples, and 0 of 54 surgical masks were positive for influenza virus. For the duration of contact that occurred with an influenza patient on any of the 12 days, nurse practitioners and physicians reported contacts with influenza-like illness patients >60 min, medical assistants reported 15-44 min, and administrative staff reported <30 min. Given the limited number of bioaerosol and surface samples positive for influenza virus in the bioaerosol and surface samples, the absence of influenza virus on the surgical masks provides inconclusive evidence for the potential to use surgical masks to assess exposure to influenza viruses. Further studies are needed to determine feasibility of this approach in assessing healthcare personnel exposures. Information learned in this study can inform future field studies on influenza transmission.


Subject(s)
Health Personnel , Influenza, Human/transmission , Masks/virology , Aerosols , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Maryland/epidemiology , Occupational Exposure , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Pilot Projects , RNA, Viral , Real-Time Polymerase Chain Reaction , Students , Surveys and Questionnaires , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL
...