Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Br J Cancer ; 129(2): 309-317, 2023 08.
Article in English | MEDLINE | ID: mdl-37237172

ABSTRACT

BACKGROUND: GSK3368715, a first-in-class, reversible inhibitor of type I protein methyltransferases (PRMTs) demonstrated anticancer activity in preclinical studies. This Phase 1 study (NCT03666988) evaluated safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of GSK3368715 in adults with advanced-stage solid tumors. METHODS: In part 1, escalating doses of oral once-daily GSK3368715 (50, 100, and 200 mg) were evaluated. Enrollment was paused at 200 mg following a higher-than-expected incidence of thromboembolic events (TEEs) among the first 19 participants, resuming under a protocol amendment starting at 100 mg. Part 2 (to evaluate preliminary efficacy) was not initiated. RESULTS: Dose-limiting toxicities were reported in 3/12 (25%) patients at 200 mg. Nine of 31 (29%) patients across dose groups experienced 12 TEEs (8 grade 3 events and 1 grade 5 pulmonary embolism). Best response achieved was stable disease, occurring in 9/31 (29%) patients. Following single and repeat dosing, GSK3368715 maximum plasma concentration was reached within 1 h post dosing. Target engagement was observed in the blood, but was modest and variable in tumor biopsies at 100 mg. CONCLUSION: Based on higher-than-expected incidence of TEEs, limited target engagement at lower doses, and lack of observed clinical efficacy, a risk/benefit analysis led to early study termination. TRIAL REGISTRATION NUMBER: NCT03666988.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Antineoplastic Agents/adverse effects , Enzyme Inhibitors/adverse effects , Maximum Tolerated Dose , Neoplasms/pathology , Treatment Outcome
2.
Sci Rep ; 10(1): 22155, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335114

ABSTRACT

Arginine methylation has been recognized as a post-translational modification with pleiotropic effects that span from regulation of transcription to metabolic processes that contribute to aberrant cell proliferation and tumorigenesis. This has brought significant attention to the development of therapeutic strategies aimed at blocking the activity of protein arginine methyltransferases (PRMTs), which catalyze the formation of various methylated arginine products on a wide variety of cellular substrates. GSK3368715 is a small molecule inhibitor of type I PRMTs currently in clinical development. Here, we evaluate the effect of type I PRMT inhibition on arginine methylation in normal human peripheral blood mononuclear cells and utilize a broad proteomic approach to identify type I PRMT substrates. This work identified heterogenous nuclear ribonucleoprotein A1 (hnRNP-A1) as a pharmacodynamic biomarker of type I PRMT inhibition. Utilizing targeted mass spectrometry (MS), methods were developed to detect and quantitate changes in methylation of specific arginine residues on hnRNP-A1. This resulted in the development and validation of novel MS and immune assays useful for the assessment of GSK3368715 induced pharmacodynamic effects in blood and tumors that can be applied to GSK3368715 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Biomarkers , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Arginine/metabolism , Cells, Cultured , Chromatography, Liquid , Drug Monitoring , Enzyme Activation , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Heterogeneous Nuclear Ribonucleoprotein A1/blood , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mass Spectrometry , Methylation , Mice , Molecular Targeted Therapy , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Substrate Specificity
3.
Bioorg Med Chem Lett ; 26(20): 5044-5050, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27599745

ABSTRACT

Liver X receptor (LXR) agonists have been reported to lower brain amyloid beta (Aß) and thus to have potential for the treatment of Alzheimer's disease. Structure and property based design led to the discovery of a series of orally bioavailable, brain penetrant LXR agonists. Oral administration of compound 18 to rats resulted in significant upregulation of the expression of the LXR target gene ABCA1 in brain tissue, but no significant effect on Aß levels was detected.


Subject(s)
Brain/metabolism , Liver X Receptors/drug effects , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Up-Regulation
4.
J Med Chem ; 59(7): 3264-71, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26990539

ABSTRACT

This article describes the application of Contour to the design and discovery of a novel, potent, orally efficacious liver X receptor ß (LXRß) agonist (17). Contour technology is a structure-based drug design platform that generates molecules using a context perceptive growth algorithm guided by a contact sensitive scoring function. The growth engine uses binding site perception and programmable growth capability to create drug-like molecules by assembling fragments that naturally complement hydrophilic and hydrophobic features of the protein binding site. Starting with a crystal structure of LXRß and a docked 2-(methylsulfonyl)benzyl alcohol fragment (6), Contour was used to design agonists containing a piperazine core. Compound 17 binds to LXRß with high affinity and to LXRα to a lesser extent, and induces the expression of LXR target genes in vitro and in vivo. This molecule served as a starting point for further optimization and generation of a candidate which is currently in human clinical trials for treating atopic dermatitis.


Subject(s)
Benzylamines/chemistry , Drug Design , Drug Discovery , Orphan Nuclear Receptors/agonists , Piperazines/chemistry , Pyrimidines/chemistry , Pyrimidines/metabolism , Sulfones/chemistry , Sulfones/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Liver X Receptors , Structure-Activity Relationship
5.
Bioorg Med Chem ; 24(6): 1384-91, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26897089

ABSTRACT

Mineralocorticoid receptor (MR) antagonists continue to be a prevalent area of research in the pharmaceutical industry. Herein we report the discovery of various spirooxindole and dibenzoxazepine constructs as potent MR antagonists. SAR analysis of our spirooxindole hit led to highly potent compounds containing polar solubilizing groups, which interact with the helix-11 region of the MR ligand binding domain (LBD). Various dibenzoxazepine moieties were also prepared in an effort to replace a known dibenzoxepane system which interacts with the hydrophobic region of the MR LBD. In addition, an X-ray crystal structure was obtained from a highly potent compound which was shown to exhibit both partial agonist and antagonist modes of action against MR.


Subject(s)
Dibenzoxazepines/pharmacology , Indoles/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Spiro Compounds/pharmacology , Crystallography, X-Ray , Dibenzoxazepines/chemical synthesis , Dibenzoxazepines/chemistry , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mineralocorticoid Receptor Antagonists/chemical synthesis , Mineralocorticoid Receptor Antagonists/chemistry , Models, Molecular , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
6.
J Med Chem ; 57(17): 7182-205, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-24832115

ABSTRACT

LXRs have been of interest as targets for the treatment of atherosclerosis for over a decade. In recent years, LXR modulators have also garnered interest for potential use in the treatment of inflammation, Alzheimer's disease (AD), dermatological conditions, hepatic steatosis, and oncology. To date, no LXR modulator has successfully progressed beyond phase I clinical trials. In this Perspective, we summarize published medicinal chemistry efforts in the context of the available crystallographic data, druglikeness, and isoform selectivity. In addition, we discuss the challenges that need to be overcome before an LXR modulator can reach clinical use.


Subject(s)
Anticholesteremic Agents/chemistry , Anticholesteremic Agents/therapeutic use , Atherosclerosis/drug therapy , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/chemistry , Anticholesteremic Agents/metabolism , Atherosclerosis/metabolism , Benzoates/chemistry , Benzoates/metabolism , Benzoates/therapeutic use , Benzylamines/chemistry , Benzylamines/metabolism , Benzylamines/therapeutic use , Binding Sites , Crystallography, X-Ray , Humans , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/metabolism , Hydrocarbons, Fluorinated/therapeutic use , Liver X Receptors , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors/metabolism , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/therapeutic use
7.
Mol Pharmacol ; 82(4): 719-27, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22810003

ABSTRACT

Liver X receptor (LXR) α and LXRß function as physiological sensors of cholesterol metabolites (oxysterols), regulating key genes involved in cholesterol and lipid metabolism. LXRs have been extensively studied in both human and rodent cell systems, revealing their potential therapeutic value in the contexts of atherosclerosis and inflammatory diseases. The LXR genome landscape has been investigated in murine macrophages but not in human THP-1 cells, which represent one of the frequently used monocyte/macrophage cell systems to study immune responses. We used a whole-genome screen to detect direct LXR target genes in THP-1 cells treated with two widely used LXR ligands [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide (T0901317) and 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy] phenylacetic acid hydrochloride (GW3965)]. This screen identified the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene as a novel LXR-regulated gene, with an LXR response element within its promoter. We investigated the regulation of SMPDL3A gene expression by LXRs across several human and mouse cell types. These studies indicate that the induction of SMPDL3A is LXR-dependent and is restricted to human blood cells with no induction observed in mouse cellular systems.


Subject(s)
Orphan Nuclear Receptors/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Benzoates/pharmacology , Benzylamines/pharmacology , Cell Line , Gene Expression Regulation, Enzymologic , Humans , Liver X Receptors , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Nicotinic Acids/pharmacology , Orphan Nuclear Receptors/agonists , Response Elements , Retinoid X Receptors/agonists , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Sphingomyelin Phosphodiesterase/genetics , Tetrahydronaphthalenes/pharmacology
9.
Protein Sci ; 17(7): 1249-55, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18413862

ABSTRACT

The proline-rich designer antibacterial peptide dimer A3-APO is currently under preclinical development for the treatment of systemic infections caused by antibiotic-resistant Gram-negative bacteria. The peptide showed remarkable stability in 25% mouse serum in vitro, exhibiting a half-life of approximately 100 min as documented by reversed-phase chromatography. Indeed, after a 30-min incubation period in undiluted mouse serum ex vivo, mass spectrometry failed to identify any degradation product. The peptide was still a major peak in full blood ex vivo, however, with degradation products present corresponding to amino-terminal cleavage. When injected into mice intravenously, very little, if any unmodified peptide could be detected after 30 min. Nevertheless, the major early metabolite, a full single-chain fragment, was detectable until 90 min, and this fragment exhibited equal or slightly better activity in the broth microdilution antimicrobial assay against a panel of resistant Enterobactericeae strains. The Chex1-Arg20 metabolite, when administered three times at 20 mg/kg to mice infected with a sublethal dose (over LD(50)) of an extended spectrum beta-lactamase-producing Escherichia coli strain, completely sterilized the mouse blood, similar to imipenem added at a higher dose. The longer and presumably more immunogenic prodrug A3-APO, injected subcutaneously twice over a 3-wk period, did not induce any antibody production, indicating the suitability of this peptide or its active metabolite for clinical development.


Subject(s)
Anti-Bacterial Agents/chemistry , Peptides/chemistry , Proline/chemistry , Animals , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Female , In Vitro Techniques , Mass Spectrometry , Mice , Microbial Sensitivity Tests , Peptides/blood , Peptides/pharmacokinetics , Peptides/pharmacology
10.
Cancer Res ; 67(16): 7731-7, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17699777

ABSTRACT

Estrogen receptor-alpha (ER-alpha) plays a crucial role in normal breast development and has also been linked to mammary carcinogenesis and clinical outcome in breast cancer patients. However, ER-alpha gene expression can change during the course of disease and, consequently, therapy resistance can occur. The molecular mechanism governing ER-alpha transcriptional activity and/or silencing is still unclear. Here, we showed that the presence of a specific pRb2/p130 multimolecular complex on the ER-alpha promoter strongly correlates with the methylation status of this gene. Furthermore, we suggested that pRb2/p130 could cooperate with ICBP90 (inverted CCAAT box binding protein of 90 kDa) and DNA methyltransferases in maintaining a specific methylation pattern of ER-alpha gene. The sequence of epigenetic events for establishing and maintaining the silenced state of ER-alpha gene can be locus- or pathway- specific, and the local remodeling of ER-alpha chromatin structure by pRb2/p130 multimolecular complexes may influence its susceptibility to specific DNA methylation. Our novel hypothesis could provide a basis for understanding how the complex pattern of ER-alpha methylation and transcriptional silencing is generated and for understanding the relationship between this pattern and its function during the neoplastic process.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Retinoblastoma Protein/genetics , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Decitabine , E1A-Associated p300 Protein/metabolism , Estrogen Receptor alpha/metabolism , Humans , Promoter Regions, Genetic , Retinoblastoma Protein/metabolism , Retinoblastoma-Like Protein p107/metabolism , Retinoblastoma-Like Protein p130/genetics , Retinoblastoma-Like Protein p130/metabolism , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...