Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38667548

ABSTRACT

Zirconia ceramic implants are commercially available from a rapidly growing number of manufacturers. Macroscopic and microscopic surface design and characteristics are considered to be key determining factors in the success of the osseointegration process. It is, therefore, crucial to assess which surface modification promotes the most favorable biological response. The purpose of this study was to conduct a comparison of modern surface modifications that are featured in the most common commercially available zirconia ceramic implant systems. A review of the currently available literature on zirconia implant surface topography and the associated bio-physical factors was conducted, with a focus on the osseointegration of zirconia surfaces. After a review of the selected articles for this study, commercially available zirconia implant surfaces were all modified using subtractive protocols. Commercially available ceramic implant surfaces were modified or enhanced using sandblasting, acid etching, laser etching, or combinations of the aforementioned. From our literature review, laser-modified surfaces emerged as the ones with the highest surface roughness and bone-implant contact (BIC). It was also found that surface roughness could be controlled to achieve optimal roughness by modifying the laser output power during manufacturing. Furthermore, laser surface modification induced a very low amount of preload microcracks in the zirconia. Osteopontin (OPN), an early-late osteogenic differentiation marker, was significantly upregulated in laser-treated surfaces. Moreover, surface wettability was highest in laser-treated surfaces, indicating favorable hydrophilicity and thus promoting early bone forming, cell adhesion, and subsequent maturation. Sandblasting followed by laser modification and sandblasting followed by acid etching and post-milling heat treatment (SE-H) surfaces featured comparable results, with favorable biological responses around zirconia implants.

3.
Materials (Basel) ; 14(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070589

ABSTRACT

BACKGROUND: Dental components manufactured with zirconia (ZrO2) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood. METHODS: This critical review evaluated the "state of the art" in relation to applications of this biomaterial in dental components and its interactions with oral tissues. RESULTS: The physico-chemical and structural properties as well as the current surface treatment methodologies for ZrO2 were explored. A critical investigation of the cellular response to this biomaterial was completed and the clinical implications discussed. Finally, surface treatments of ZrO2 demonstrate that excellent osseointegration is possible and provide encouraging prospects for rapid bone adhesion. Furthermore, sophisticated surface treatment techniques and technologies are providing impressive oral soft tissue cell responses thus leading to superior biological seal. CONCLUSIONS: Dental devices manufactured from ZrO2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.

4.
Materials (Basel) ; 13(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291827

ABSTRACT

BACKGROUND: The clinical use of zirconia implants has been shown to increase steadily due to their biological, aesthetic, and physical properties; therefore, this bibliometric study aimed to review the clinical research and co-authors in the field of zirconia dental implant rehabilitation. METHODS: We searched Scopus and Web of Science databases using a comprehensive search strategy to 5 October 2020, and independently paired reviewers who screened studies, and collected data with inclusion criteria restricted to clinical research only (either prospective or retrospective). Data on article title, co-authors, number of citations received, journal details, publication year, country and institution involved, funding, study design, marginal bone loss, survival rate, failure, follow-up, and the author's bibliometric data were collected and evaluated. RESULTS: A total of 29 clinical studies were published between 2008 and 2020 as 41.4% were prospective cohort studies and 48.3% originated from Germany. Most of the included studies had been published in Clinical Oral Implant Research (n = 12), and the most productive institution was the Medical Center of University of Freiburg. The author with the largest number of clinical studies on zirconia implants was Kohal R.J. (n = 10), followed by Spies B.C. (n = 8). CONCLUSIONS: This study revealed that zirconia implants have been more prominent in the last ten years, which is a valuable option for oral rehabilitation with marginal bone loss and survival rate comparable to titanium dental implants.

5.
J Clin Med ; 9(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260343

ABSTRACT

BACKGROUND: The aim of this study is to evaluate effects on stainless steel (SS) and zirconia implant drills of 50 cycles of sterilization through different processes. METHODS: A total of 24 SS and 24 zirconia drills were treated with 3 different sterilization processes: 50 cycles of immersion in glutaraldehyde 2%, 50 cycles in 6% hydrogen peroxide and 50 cycles of heat. Energy-dispersive X-ray spectroscopy (EDX) was used to compare the effect of the different treatments compared to new untreated controls. Infrared thermography was used to measure the increase of temperature during drilling on bone ribs. A scanning electron microscopy (SEM) was used to measure the roughness of the samples. RESULTS: Zirconia drills seem not to be affected by the different treatments; no significant differences were found with EDX nor through thermography controls. SS drills were affected by the different treatments, as confirmed by the increased roughness of the SS samples after all the cycles of sterilization/disinfection, measured at SEM. On the contrary, the zirconia drills roughness was not particularly affected by the chemical and thermal cycles. Significant differences were observed regarding the temperature, between steel and zirconia drills (p < 0.01). CONCLUSIONS: The disinfection agents had a weak impact on the temperature changes during implant bone preparation, while heat sterilization processes had no effect on either of the drills evaluated. The disinfection agents increased the roughness of the steel drills, while they had no effect on the zirconia drills.

6.
J Clin Med ; 9(1)2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31948130

ABSTRACT

BACKGROUND: The heat produced during implant site osteotomy can potentially interfere with and influence the osseointegration process of a dental implant. The objective of this in vitro investigation was to measure the temperature changes during simulated osteotomies in bovine rib bone. The measurements were made at the apical area of the osteotomies with steel implant drills compared to zirconia implant drills. METHODS: Steel cylindrical drills (2 mm) and zirconia cylindrical drills (2 mm) were evaluated in vitro using bovine rib bone for a total of five groups based on the number of osteotomies performed with each drill: 10, 20, 40, 90, or 120 osteotomies. Bone and apical drill temperatures were measured by means of infrared thermography. The drilling time for each osteotomy was measured for each preparation. RESULTS: Statistically significant differences were found in the temperature measurements in the bone and apical portion of the drills between the study groups (p < 0.05). A statistically significant difference was observed for drilling time preparation between steel cylindrical drill (2 mm) and zirconia cylindrical drills (2 mm) (p < 0.01). CONCLUSIONS: The drill material has an impact on the temperature changes that occur at its apical portion during bone preparation for implant placement.

7.
J Mech Behav Biomed Mater ; 101: 103423, 2020 01.
Article in English | MEDLINE | ID: mdl-31536885

ABSTRACT

OBJECTIVE: To evaluate the effect of artificial aging on the mechanical resistance and micromechanical properties of commercially and noncommercially available zirconia dental implants. METHODS: Scanning electron microscopy (SEM) and X-ray computed tomography (X-CT) were performed on implant systems including: Z-systems®, Straumann®, Zibone® and commercially and non-commercially available TAV dental® with varying grain sizes. Accelerated aging was performed at 134 °C and 2-bar pressure for 30 hours. Before and after aging, the mechanical load to failure was investigated and the bending moments were calculated. Nanoindentation responses of the representative Zibone implant before and after aging were performed to evaluate the effects of aging on hardness (H) and Young's modulus (E). A two-sample t-test statistical analysis was used to determine significant differences of bending moments within groups. RESULTS: All implants presented with compact and homogenous core structures without porosities. The bending moment was significantly increased after aging for all groups (P ≤ 0.05) except for Z-systems (significant decrease (P = 0.022)) and TAV group 3 (no significant increase (P = 0.181)). The increase in bending moment was less pronounced with increasing grain size in TAV groups (group 1: P = 0.036, group 2: P = 0.05, group 3: P = 0.18). E and H were reduced approximately 32% and 18% respectively following aging within the transformed, microcracked zone of the presentative Zibone implant. CONCLUSIONS: Aging led to both increase and decrease of the mechanical properties of the implant systems analyzed. The apparent contrast amongst groups can be explained based on differences in grain sizes and surface features. Aging decreased micromechanical properties of one implant system which warrants further investigation.


Subject(s)
Dental Implants , Mechanical Phenomena , Zirconium , Elastic Modulus , Hardness , Mechanical Tests , Surface Properties , Time Factors
8.
Materials (Basel) ; 12(3)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30682826

ABSTRACT

This review of literature paper was done in order to conduct a review of the literature and an assessment of the effects of titanium implant corrosion on peri-implant health and success in the oral environment. This paper evaluates and critically reviews the findings of the multiple in-depth in vivo and in vitro studies that are related to corrosion aspects of the titanium and its alloys. A literature survey was conducted by electronic search in Medline and studies that were published between 1940 and August 2018 were selected. The search terms used were types of corrosion, corrosion of titanium implants, titanium corrosion, metal ion release from the titanium implants, fretting and pitting corrosion, implant corrosion, peri implantitis, and corrosion. Both in vivo and in vitro studies were also included in the review. The search and selection resulted in 64 articles. These articles were divided on the basis of their context to different kinds of corrosion related to titanium dental implants. It is evident that metal ions are released from titanium and titanium alloy dental implants as a result of corrosion. Corrosion of implants is multifactorial, including electrical, chemical, and mechanical factors, which have an effect on the peri-implant tissues and microbiota. The literature surveyed showed that corrosion related to titanium and its alloys has an effect on the health of peri-implant soft and hard tissue and the long term survival of metal dental implants. It can be concluded that presence of the long-term corrosion reaction along with continuous corrosion leads to the release of ions into the peri-implant tissue but also to a disintegration of the implant that contribute to material fatigue and even fracture of the abutments and implant body or both. This combined impact of the corrosion, bacterial activity, chemical reactions, and functional stresses are to be looked at as important factors of implant failure. The findings can be used to explore the possible strategies of research to investigate the biological impact of implant materials.

9.
EPMA J ; 9(3): 331-343, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30174768

ABSTRACT

BACKGROUND AND INTRODUCTION: It is a well-known fact that titanium particles deriving from dental titanium implants (DTI) dissolve into the surrounding bone. Although titanium (TI) is regarded as a compatible implant material, increasing concern is coming up that the dissolved titanium particles induce inflammatory reactions around the implant. Specifically, the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is expressed in the adjacent bone. The transition from TNF-α-induced local inflammation following insertion of DTI surgery to a chronic stage of "silent inflammation" could be a neglected cause of unexplained medical conditions. MATERIAL AND METHODS: The signaling pathways involved in the induction of cytokine release were analyzed by multiplex analysis. We examined samples of jawbone (JB) for seven cytokines in two groups: specimens from 14 patients were analyzed in areas of DTI for particle-mediated release of cytokines. Each of the adjacent to DTI tissue samples showed clinically fatty degenerated and osteonecrotic medullary changes in the JB (FDOJ). Specimens from 19 patients were of healthy JB. In five cases, we measured the concentration of dissolved Ti particles by spectrometry. RESULTS: All DTI-FDOJ samples showed RANTES/CCL5 (R/C) as the only extremely overexpressed cytokine. DTI-FDOJ cohort showed a 30-fold mean overexpression of R/C as compared with a control cohort of 19 healthy JB samples. Concentration of dissolved Ti particles in DTI-FDOJ was 30-fold higher than an estimated maximum of 1.000 µg/kg. DISCUSSION: As R/C is discussed in the literature as a possible contributor to inflammatory diseases, the here-presented research examines the question of whether common DTI may provoke the development of chronic inflammation in the jawbone in an impaired state of healing. Such changes in areas of the JB may lead to hyperactivated signaling pathways of TNF-α induced R/C overexpression, and result in unrecognized sources of silent inflammation. This may contribute to disease patterns like rheumatic arthritis, multiple sclerosis, and other systemic-inflammatory diseases, which is widely discussed in scientific papers. CONCLUSION: From a systemic perspective, we recommend that more attention be paid to the cytokine cross-talk that is provoked by dissolved Ti particles from DTI in medicine and dentistry. This may contribute to further development of personalized strategies in preventive medicine.

10.
Clin Implant Dent Relat Res ; 19(2): 245-252, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27862871

ABSTRACT

BACKGROUND: Despite increased popularity of Zirconia dental implants, concerns have been raised regarding low temperature degradation (LTD) and its effect on micro-structural integrity. PURPOSE: This study evaluated the effect of LTD on four types of Zirconia dental implants at 0, 30, and 60 years of artificial aging. The impact of aging on t-m transformation and micro crack formation was measured. MATERIALS AND METHODS: Accelerated aging at 15 and 30 hours, approximating 30 and 60 years in vivo, aged 36 Zirconia dental implants: Z systems® (A), Straumann® (B), Ceraroot® (C), and Zeramex® (D). Focused ion beam-scanning electron microscopic analysis determined the micro structural features, phase transformation, and the formation of micro cracks. RESULTS: At 15 hours, type A implant presented with micro cracks and t-m transformation of 0.9 µm and 3.1 µm, respectively. At 30 hours, micro cracks remained shallow (1 µm). At 15 hours, type B implant presented micro cracks (0.7 µm) and grain transformation (1.2 µm). At 30 hours, these features remained superficial at 0.6 and 1.5 µm, respectively. Type C implant presented surface micro cracks of 0.3 µm at 15 hours. The depth of t-m transformation slightly increased to 1.4 µm. At 30 hours, number of micro cracks increased at the surface to an average depth of 1.5 µm. Depth of t-m transformation increased to an average of 2.5 µm. At 15 hours, micro cracks remained superficial (0.8 µm) for type D implant and depth of t-m transformation increased to 2.3 µm. At 30 hours, the depth of micro cracks increased to an average of 1.3 µm followed by increased t-m transformation to a depth of 4.1 µm. CONCLUSION: Depth of grain transformation remained within 1-4 µm from the surface. The effect of aging was minimal for all Zirconia implants.


Subject(s)
Dental Implants , Dental Materials/chemistry , Zirconium/chemistry , Aging , Cold Temperature , Dental Stress Analysis , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning
11.
J Oral Implantol ; 31(4): 171-9, 2005.
Article in English | MEDLINE | ID: mdl-16145844

ABSTRACT

Demineralized freeze-dried bone allografts (DFDBA) have been successfully used alone or in composite grafts for many decades. Little research has been done on the effect of retaining the mineral content of bone allografts. This study histologically and histomorphometrically evaluated a new mineralized bone allograft material placed in human atrophic maxillary sinuses. Seven partially edentulous patients requiring sinus grafts before implant placement were selected for this study Their age range was 56 to 81 years (mean 67.7 years). Test grafts consisted of a mineralized solvent-dehydrated cancellous bone allograft, and control grafts were a composite of DFDBA and deproteinized bovine bone xenograft (1:1). Bilateral cases (n = 3) received both test and control grafts on opposite sides, and unilateral cases received either a test (n = 3) or control (n = 1) graft only. At 10 months, core biopsies were taken from each graft site, and dental implants were placed into the augmented bone. All bone grafts resulted in new bone formation and all implants osseointegrated. Test grafts resorbed and were replaced by newly formed bone significantly faster and in greater quantities than were control grafts. No complications with grafts or implants were noted. Both test and control grafts achieved excellent results. The faster bone formation observed with the test graft may be due, in part, to its smaller particle size compared with the bovine portion of the control graft. Test grafts were either replaced by new bone or displayed new bone-to-particle surface contact in higher percentages than did control grafts. No differences in osseointegration or graft stability were noted 2 years after the study.


Subject(s)
Bone Regeneration , Bone Transplantation/methods , Maxillary Sinus/surgery , Oral Surgical Procedures, Preprosthetic/methods , Aged , Aged, 80 and over , Animals , Bone Matrix/transplantation , Bone Substitutes , Cattle , Dental Implantation, Endosseous , Desiccation , Humans , Middle Aged , Minerals , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL