Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724627

ABSTRACT

Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.

2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765071

ABSTRACT

Currently, the treatment of Proteus mirabilis infections is considered to be complicated as the organism has become resistant to numerous antibiotic classes. Therefore, new inhibitors should be developed, targeting bacterial molecular functions. Methionine tRNA synthetase (MetRS), a member of the aminoacyl-tRNA synthetase family, is essential for protein biosynthesis offering a promising target for novel antibiotics discovery. In the context of computer-aided drug design (CADD), the current research presents the construction and analysis of a comparative homology model for P. mirabilis MetRS, enabling development of novel inhibitors with greater selectivity. Molecular Operating Environment (MOE) software was used to build a homology model for P. mirabilis MetRS using Escherichia coli MetRS as a template. The model was evaluated, and the active site of the target protein predicted from its sequence using conservation analysis. Molecular dynamic simulations were performed to evaluate the stability of the modeled protein structure. In order to evaluate the predicted active site interactions, methionine (the natural substrate of MetRS) and several inhibitors of bacterial MetRS were docked into the constructed model using MOE. After validation of the model, pharmacophore-based virtual screening for a systemically prepared dataset of compounds was performed to prove the feasibility of the proposed model, identifying possible parent compounds for further development of MetRS inhibitors against P. mirabilis.

3.
RSC Adv ; 12(4): 2511-2524, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425259

ABSTRACT

Antimicrobial resistance is a very challenging medical issue and identifying novel antimicrobial targets is one of the means to overcome this challenge. Phenylalanyl tRNA synthetase (PheRS) is a promising antimicrobial target owing to its unique structure and the possibility of selectivity in the design of inhibitors. Sixteen novel benzimidazole based compounds (5a-b), (6a-e), (7a-d), (9a-e) and three N,N-dimethyl-7-deazapurine based compounds (16a-c) were designed to mimic the natural substrate of PheRS, phenylalanyl adenylate (Phe-AMP), that was examined through flexible alignment. The compounds were successfully synthesised chemically in two schemes using 4 to 6-steps synthetic pathways, and evaluated against a panel of five microorganisms with the best activity observed against Enterococcus faecalis. To further investigate the designed compounds, a homology model of E. faecalis PheRS was generated, and PheRS-ligand complexes obtained through computational docking. The PheRS-ligand complexes were subjected to molecular dynamics simulations and computational binding affinity studies. As a conclusion, and using data from the computational studies compound 9e, containing the (2-naphthyl)-l-alanine and benzimidazole moieties, was identified as optimal with respect to occupancy of the active site and binding interactions within the phenylalanine and adenosine binding pockets.

4.
BMC Chem ; 15(1): 58, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711258

ABSTRACT

BACKGROUND: Two series of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues were designed and synthesised as novel antimicrobial drugs through inhibition of phenylalanyl-tRNA synthetase (PheRS), which is a promising antimicrobial target. Compounds were designed to mimic the structural features of phenylalanyl adenylate (Phe-AMP) the PheRS natural substrate. METHODS: A 3D conformational alignment for the designed compounds and the PheRS natural substrate revealed a high level of conformational similarity, and a molecular docking study indicated the ability of the designed compounds to occupy both Phe-AMP binding pockets. A molecular dynamics (MD) simulation comparative study was performed to understand the binding interactions with PheRS from different bacterial microorganisms. The synthetic pathway of the designed compounds proceeded in five steps starting from benzimidazole. The fourteen synthesised compounds 5a-d, 6a-c, 8a-d and 9a-c were purified, fully characterised and obtained in high yield. RESULTS: In vitro antimicrobial evaluation against five bacterial strains showed a moderate activity of compound 8b with MIC value of 32 µg/mL against S. aureus, while all the synthesised compounds showed weak activity against both E. faecalis and P. aeruginosa (MIC 128 µg/mL). CONCLUSION: Compound 8b provides a lead compound for further structural development to obtain high affinity PheRS inhibitors.

5.
Eur J Med Chem ; 152: 560-569, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29763805

ABSTRACT

A series of (2-(1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl) acetamido) acids) (6 a-m), (7) has been designed to inhibit the action of fungus chitin synthase enzyme (CHS). The synthesis of the designed compounds was carried out in four steps starting from the reaction between 1-methylquinazoline-2,4(1H,3H)-dione and ethyl chloroacetate to yield the ethyl acetate derivative. This ester was hydrolyzed to the corresponding carboxylic acid derivative that was then utilized to couple several amino acids getting the final designed compounds. The synthesized compounds were tested for their inhibition against CHS. Compound 7 showed the highest potency among others with minimum inhibitory concentration (IC50) of 0.166 mmol/L, while polyoxin B (the positive control) had IC50 of 0.17 mmol/L. The synthesized compounds were also evaluated for their in vitro antifungal activity using Aspergillus fumigates, Aspergillus flavus, Crytococcus neoformans and Candida albicans. Unfortunately, the 14 synthesized compounds showed lower in vitro activity compared to the used active controls. However, compound 6m and fluconazole have synergistic effect on Aspergillus flavus; Compounds 7 and fluconazole have synergistic effects on Aspergillus fumigates.


Subject(s)
Amino Acids/pharmacology , Antifungal Agents/pharmacology , Chitin Synthase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Quinazolinones/pharmacology , Amino Acids/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus/drug effects , Candida albicans/drug effects , Chitin Synthase/metabolism , Cryptococcus neoformans/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Structure , Quinazolinones/chemistry , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship
6.
Arch Pharm (Weinheim) ; 350(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-28177550

ABSTRACT

Series of N-(4-substitutedphenyl)-4-(1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkanamides (5a-j) and 4-chloro-N'-((1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkaloyl)benzohydrazides (6a-f) were designed based on the previously reported essential structural features for anticonvulsant activity. Several amino acids were incorporated within the synthesized quinazolin-4(3H)-ones to improve their bioavailability and the anticonvulsant activity. Synthesis of the target compounds was accomplished in four steps starting from the reaction between N-methyl isatoic anhydride and the appropriate amino acid. Then, the carboxylic acid group was utilized to synthesize the required final structures. The new quinazolinone derivatives were evaluated for their anticonvulsant activity according to the Anticonvulsant Drug Development (ADD) Program protocol. All the 16 new quinazolinones exhibited good anticonvulsant activity; especially 5f, 5b, and 5c showed superior anticonvulsant activities in comparison to the reference drug, with ED50 values of 28.90, 47.38, and 56.40 mg/kg, respectively.


Subject(s)
Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Seizures/prevention & control , Animals , Dose-Response Relationship, Drug , Electroshock , Mice , Pentylenetetrazole , Rotarod Performance Test , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...