Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e25523, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356604

ABSTRACT

The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1ß positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1ß, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1ß and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.

2.
Front Immunol ; 14: 1304758, 2023.
Article in English | MEDLINE | ID: mdl-38124753

ABSTRACT

Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.


Subject(s)
Asthma , Receptors, Purinergic P2 , Humans , Mice , Animals , Interleukin-1 Receptor-Like 1 Protein , Allergens , Interleukin-33 , Asthma/metabolism , Inflammation/metabolism , Pyroglyphidae , Dermatophagoides pteronyssinus , Adenosine Triphosphate , Intracellular Signaling Peptides and Proteins
SELECTION OF CITATIONS
SEARCH DETAIL