Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5068, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038540

ABSTRACT

Ultraviolet colouration is thought to be an important form of signalling in many bird species, yet broad insights regarding the prevalence of ultraviolet plumage colouration and the factors promoting its evolution are currently lacking. In this paper, we develop a image segmentation pipeline based on deep learning that considerably outperforms classical (i.e. non deep learning) segmentation methods, and use this to extract accurate information on whole-body plumage colouration from photographs of >24,000 museum specimens covering >4500 species of passerine birds. Our results demonstrate that ultraviolet reflectance, particularly as a component of other colours, is widespread across the passerine radiation but is strongly phylogenetically conserved. We also find clear evidence in support of the role of light environment in promoting the evolution of ultraviolet plumage colouration, and a weak trend towards higher ultraviolet plumage reflectance among bird species with ultraviolet rather than violet-sensitive visual systems. Overall, our study provides important broad-scale insight into an enigmatic component of avian colouration, as well as demonstrating that deep learning has considerable promise for allowing new data to be brought to bear on long-standing questions in ecology and evolution.


Subject(s)
Feathers , Passeriformes , Animals , Pigmentation , Ultraviolet Rays
2.
Nat Ecol Evol ; 6(5): 622-629, 2022 05.
Article in English | MEDLINE | ID: mdl-35379937

ABSTRACT

It has long been suggested that tropical species are generally more colourful than temperate species, but whether latitudinal gradients in organismal colourfulness exist remains controversial. Here we quantify global latitudinal trends in colourfulness (within-individual colour diversity) by collating and analysing a photographic dataset of whole-body plumage reflectance information for >4,500 species of passerine birds. We show that male and female birds of tropical passerine species are generally more colourful than their temperate counterparts, both on average and in the extreme. We also show that these geographic gradients can be explained in part by the effects of several latitude-related factors related to classic hypotheses for climatic and ecological determinants of organismal colourfulness. Taken together, our results reveal that species' colourfulness peaks in the tropics for passerine birds, confirming the existence of a long-suspected yet hitherto elusive trend in the distribution of global biodiversity.


Subject(s)
Biodiversity , Female , Humans , Male
3.
Nat Commun ; 10(1): 1773, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992444

ABSTRACT

Sexual selection is proposed to be a powerful driver of phenotypic evolution in animal systems. At macroevolutionary scales, sexual selection can theoretically drive both the rate and direction of phenotypic evolution, but this hypothesis remains contentious. Here, we find that differences in the rate and direction of plumage colour evolution are predicted by a proxy for sexual selection intensity (plumage dichromatism) in a large radiation of suboscine passerine birds (Tyrannida). We show that rates of plumage evolution are correlated between the sexes, but that sexual selection has a strong positive effect on male, but not female, interspecific divergence rates. Furthermore, we demonstrate that rapid male plumage divergence is biased towards carotenoid-based (red/yellow) colours widely assumed to represent honest sexual signals. Our results highlight the central role of sexual selection in driving avian colour divergence, and reveal the existence of convergent evolutionary responses of animal signalling traits under sexual selection.


Subject(s)
Biological Evolution , Feathers/physiology , Mating Preference, Animal/physiology , Passeriformes/physiology , Pigmentation/physiology , Animals , Carotenoids/metabolism , Color , Datasets as Topic , Male , Phylogeny , Sex Characteristics
4.
Nature ; 552(7685): 430, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29186123

ABSTRACT

This corrects the article DOI: 10.1038/nature21074.

5.
Nature ; 542(7641): 344-347, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28146475

ABSTRACT

The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.


Subject(s)
Beak/anatomy & histology , Biological Evolution , Birds/physiology , Animals , Crowdsourcing , Datasets as Topic , Female , Male , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...