Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 29733, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435342

ABSTRACT

Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.


Subject(s)
Lipopolysaccharides/metabolism , Lotus/microbiology , Mycorrhizae/physiology , Plant Proteins/metabolism , Plant Roots/microbiology , Amino Acid Sequence , Carbohydrate Sequence , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Lotus/genetics , Mutation , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified , Rhizobium/physiology , Sequence Homology, Amino Acid , Symbiosis
2.
Mycorrhiza ; 13(2): 107-15, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12682833

ABSTRACT

Two genetically related strains of Tuber borchii Vittad. (1BO and 43BO) produce mycorrhizas with Tilia platyphyllos Scop. with a different degree of efficiency. The aim of this work was to characterize the morphology of the fungal symbiotic structures in order to examine potential relationships between the anatomical traits of the mycorrhiza, the mycorrhizal capacities of the fungal strains and their effect on the host plants. Some morphological features of mantle hyphae (small size, intense staining, vacuolization, abundance of mitochondria) led to a mantle with morphological features that were isolate-specific. There were unexpected differences, at least under our experimental conditions: 1BO strain mantle cells were larger, less reactive to staining, more highly vacuolated and poorer in mitochondria than those of 43BO. These features were found throughout the mantle in 1BO, while the inner mantle hyphae of 43BO were significantly smaller and more intensely stained than the outer cells. In the 43BO strain there was a positive relation between these features and higher infectivity (evaluated as percentage of mycorrhizal tips) as well as a slightly more effective stimulation of plant growth. These observations suggest that genetically related truffle strains produce mycorrhizas with different morphologies, which may be related to a more efficient response of the host plant to inoculation.


Subject(s)
Ascomycota/ultrastructure , Mycorrhizae/ultrastructure , Tilia/microbiology , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL