Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 11(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36015416

ABSTRACT

The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, ßCA1, ßCA2, ßCA3, ßCA4, ßCA5, and ßCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of ßCA1, and other cytoplasmic CAs, ßCA2, ßCA3, and ßCA4, as well as of the chloroplast CAs, ßCA5, and the stromal forms of ßCA1 in a short-term range 1-2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial ßCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.

2.
Protoplasma ; 253(3): 719-727, 2016 May.
Article in English | MEDLINE | ID: mdl-26666552

ABSTRACT

The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves.


Subject(s)
Beta vulgaris/physiology , Beta vulgaris/ultrastructure , Nitrates/metabolism , Plant Leaves/physiology , Plant Leaves/ultrastructure , Beta vulgaris/growth & development , Chlorophyll/metabolism , Chlorophyll A , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Nitrogen/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL