Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 123(25): 5274-5282, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31188586

ABSTRACT

Microwave transitions in the region 7-26 GHz were measured for the methane-propane van der Waals complex. The nearly free internal rotation of methane within the complex gives rise to three states that do not relax even in a 5 K supersonic expansion. Eighteen lines have been assigned to the lowest state and are well fitted to a semirigid rotor model, with rotational constants A = 7553.8229 (24) MHz, B = 2483.9200 (8) MHz, and C = 2041.8692 (5) MHz, and six distortion constants. The structure has the methane positioned above the plane defined by the propane carbon atoms with a center-of-mass van der Waals bond distance of 3.98 Å. This is significantly larger than the equilibrium value of 3.71 Å found with ab initio calculations done at the CCSD(T)-F12a/aug-cc-pVTZ level of theory. Further calculations encompassing a large range of angular orientations of the methane subunit indicate that angular motion produces a large zero-point contribution to the energy, which not only lowers the effective barrier to internal rotation of the methane but also increases the radial distance between subunits. Therefore, although in the lowest energy structure the methane can get close to the propane by interdigitating the hydrogens atoms, the zero-point energy effectively flattens out the potential so that the hydrogens become less restricting.

2.
J Chem Phys ; 149(14): 144304, 2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30316255

ABSTRACT

Vinylsulfur pentafluoride (VSPF), a molecule with a four-fold internal rotor, -SF4, has been studied with high resolution Fourier transform microwave spectroscopy. We believe that this is the first report of resolved four-fold internal rotation. As such, we have presented the tools needed to understand and analyze such a problem. These include debugging the ERHAM computer program necessary to fit the spectra and the free rotor to high barrier correlation diagram necessary to understand the torsional states of the four-fold rotor. The A, E, and B torsional state rotational transitions are well resolved and assigned. Spectroscopic transitions of four isotopologues of VSPF, H2C=CH-SF5, the normal isotopologue, and the singly substituted 34S and 13C isotopologues were measured and assigned. Contrary to expectation, the A torsional state could not be fit with only a semi-rigid Hamiltonian. The barrier to internal rotation, V 4, is found to be 227 cm-1. Ab initio calculations at the MP2 aug-cc-pVQZ level of theory and basis set were performed and the results of this calculation are compared to our experimental results.

3.
J Chem Phys ; 146(20): 204302, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571327

ABSTRACT

The pure rotational transitions of H2-AuCl have been measured using a pulsed-jet cavity Fourier transform microwave spectrometer equipped with a laser ablation source. The structure was found to be T-shaped, with the H-H bond interacting with the gold atom. Both 35Cl and 37Cl isotopologues have been measured for both ortho and para states of H2. Rotational constants, quartic centrifugal distortion constants, and nuclear quadrupole coupling constants for gold and chlorine have been determined. The use of the nuclear spin-nuclear spin interaction terms Daa, Dbb, and Dcc for H2 were required to fit the ortho state of hydrogen, as well as a nuclear-spin rotation constant Caa. The values of the nuclear quadrupole coupling constant of gold are χaa=-817.9929(35) MHz, χbb=504.0(27) MHz, and χcc=314.0(27). This is large compared to the eQq of AuCl, 9.63 312(13) MHz, which indicates a strong, covalent interaction between gold and dihydrogen.

4.
J Phys Chem A ; 120(36): 7145-51, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27556339

ABSTRACT

Rotational transitions belonging to 2-iodobutane (sec-butyl-iodide, CH3CHICH2CH3) were measured over the frequency range 5.5-16.5 GHz via jet-pulsed Fourier transform microwave spectroscopy. The complete nuclear quadrupole coupling tensor of iodine, χ, was obtained for the gauche (g)-, anti (a)-, and gauche' (g')-conformers as well as the four (13)C isotopologues of the gauche species. Rotational constants, centrifugal distortion constants, quadrupole coupling constants, and nuclear spin-rotation constants were determined for each species. Changes in χ of the iodine nucleus, resulting from conformational and isotopic differences, are discussed. Isotopic substitution of g-2-iodobutane allowed for an rs structure to be determined for the carbon backbone. Additionally, isotopic substitution in conjunction with an ab initio structure allowed for a fit of various r0 structural parameters belonging to g-2-iodobutane.

5.
J Phys Chem A ; 119(42): 10475-80, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26421936

ABSTRACT

This work reports the first known spectroscopic observation of the monohydrate and dihydrate complexes of perfluoropropionic acid (PFPA). The spectra have been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer in the 7750 to 14,250 MHz region. The structures of the species have been confirmed with the aid of ab initio quantum chemical calculations. Rotational constants A, B, and C have been determined and reported for both species along with centrifugal distortion constants ΔJ, ΔJK, ΔK, δJ, δK for H2O-PFPA and ΔJ, ΔJK, and δJ for (H2O)2-PFPA. Effects due to large amplitude motions were not observable in these experiments. Structures of the complexes have been determined using a combination of experimental second moment values and ab initio results. The complexation of the -OH of one or two water molecules has been found to occur in the plane of the carboxylic acid group forming a six- or eight-member ring.

6.
J Chem Phys ; 143(8): 084301, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26328837

ABSTRACT

Rotational spectra of the weakly bound H2O-N2O complex and its HOD-N2O isotopologue in a supersonic jet are reported. Rotational constants of the singly substituted deuterium in water and each singly substituted nitrogen-15 are presented. Combinations of isotopic data and high level ab initio calculations place the water in a similar position to those of the isoelectronic H2O-CO2 complex, with a slight tilt of the OH towards the NNO axis. The deuterium nuclear quadrupole coupling constant places the deuterium on the O-H axis quasi-parallel to the NNO axis.

8.
Phys Chem Chem Phys ; 17(26): 17266-70, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26073642

ABSTRACT

The rotational spectrum of trifluoroacetonitrile-water complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants, centrifugal distortion constants, and the (14)N nuclear quadrupole coupling constants have been determined. The complex is T-shaped, with the oxygen atom from the water located 3.135 Å from the carbon atom of CF3 of the trifluoroacetonitrile molecule.

9.
J Chem Phys ; 141(11): 114306, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25240357

ABSTRACT

H2-AgCl has been observed on a Fourier transform microwave spectrometer equipped with laser ablation source and determined to be a dihydrogen complex. Transitions up to J = 3-2 have been measured and analyzed for four isotopologues of the complex containing ortho and para H2. The ortho and para spin states have been included in one fit, a deviation from the typical H2 complex. Rotational constants B and C, centrifugal distortion constants Δ(J) and Δ(JK), nuclear electric quadrupole coupling constants χ(aa), χ(bb), and χ(cc) for (35)Cl and (37)Cl have been fit for both spin states while nuclear spin-nuclear spin constants D(aa), D(bb), and D(cc), and nuclear spin-rotation constant C(aa) have been reported for the ortho spin state. Quantum chemical calculations predict a strong bonding interaction and the strength of the complex has been related to reported χ(aa) and Δ(J) values amongst a host of comparable species, including the AgCl monomer itself. Bond lengths have been determined for Ag-Cl, Ag-H2 center-of-mass, and H-H and are reported.

10.
J Phys Chem A ; 118(5): 856-61, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24428820

ABSTRACT

The rotational spectra of cyclopentanone and its van der Waals complexes with argon and neon have been observed with a Balle-Flygare type pulsed jet Fourier transform microwave spectrometer in the 6 to 20 GHz region. This work improves the rotational constants and quartic centrifugal distortion constants for cyclopentanone and its five (13)C and the (18)O isotopologues. The argon-(12)C5H8(16)O van der Waals complex has rotational constants of A = 2611.6688, B = 1112.30298, and C = 971.31969 MHz. The (20)Ne-(12)C5H8(16)O complex has rotational constants of A = 2728.8120, B = 1736.5882, and C = 1440.4681 MHz. In addition, the five unique, singly substituted (13)C and (18)O isotopologues of the argon complex are reported. The five single-substituted (13)C of the (20)Ne complex and the (22)Ne-(12)C5H8(16)O complex are reported. The rare gases are in van der Waals contact with the carbonyl α carbon and nearly in contact with the hydrogen on ß and γ carbons toward the back of the ring.

11.
J Phys Chem A ; 118(6): 1047-51, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24455990

ABSTRACT

The rotational spectra of five isotopologues of the 1:1 complex trifluoroanisole-water have been investigated with pulsed jet Fourier transform microwave spectroscopy. The triple fluorination of the methyl group greatly affects the features of the rotational spectrum of the complex with water, with respect to those of the related complex anisole-water. The shape, the internal dynamics, and the isotopic effects turned out to be quite different from those of the anisole-water adduct ( Giuliano , B. M. ; Caminati , W. Angew. Chem., Int. Ed. 2005 , 44 , 603 - 606 ). However, as in anisole-water, water has the double role as a proton donor and proton acceptor, and it is linked to trifluoroanisole through two, O-H···O and C-H···O hydrogen bonds.

12.
J Phys Chem A ; 117(50): 13691-5, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24044693

ABSTRACT

The rotational spectra of cyclohexene oxide and its van der Waals complex with argon have been observed with a Balle-Flygare type pulsed jet Fourier transform microwave spectrometer in the 6 to 20 GHz region. This work improves the existing rotational and quartic centrifugal distortion constants of cyclohexene oxide, its six singly substituted (13)C, and the (18)O isotopologue. In addition, the (17)O isotopologue was observed in natural abundance. The quadrupole coupling constants for the (17)O isotopologue are χ(aa) = 8.855(5), χ(bb) = -4.560(4), and χ(cc) = -4.296(4) MHz. The argon-(12)C6H10(16)O complex has rotational constants of A = 2146.4825(2), B = 908.64292(8), and C = 859.00320(8) MHz. Additionally, the six unique singly substituted (13)C isotopologues of the argon complex are reported here. The position of the argon that is consistent with the parent and six (13)C complex rotational constants is above the ring on the side opposite the epoxide.

13.
J Phys Chem A ; 117(39): 9968-74, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23574435

ABSTRACT

The rotational spectrum of nitrogen-protonated nitrous oxide (HNNO(+)), an isomer whose existence was first inferred from kinetic studies more than 30 years ago, has now been detected by Fourier transform microwave spectroscopy, guided by new high-level coupled-cluster calculations of its molecular structure. From high-resolution measurements of the hyperfine splitting in its fundamental rotational transition, the rotational constant (B + C)/2 and the quadrupole tensor element χaa(N) for both nitrogen atoms have been precisely determined. The derived constants agree well with quantum-chemical calculations here and others in the literature. The χaa(N) values for the two isomers of protonated nitrous oxide are qualitatively consistent with the valence bond description of H-N═N(+)═O for the electronic structure of the nitrogen-protonated form and N≡N(+)-O-H for the oxygen-protonated form. HNNO(+) is found to be 2-4 times less abundant than NNOH(+) under a range of experimental conditions, as might be expected because this metastable isomer is known to be only ∼6 kcal mol(-1) less stable than ground-state NNOH(+) from kinetic measurements by Ferguson and co-workers.

14.
Inorg Chem ; 52(2): 816-22, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23301994

ABSTRACT

This work details a gas phase study of the bonding of hydrogen to the metal in a simple diatomic analogue of a metal organic framework (MOF), copper fluoride, via dihydrogen complexation. This is the first microwave study of these types of interactions. J = 1-0 transitions of para-H(2)-CuF, ortho-D(2)-CuF, and HD-CuF have been measured and analyzed. The complexes were prepared by laser ablating a metal copper rod in the presence of a gas mix of 0.6% SF(6) and 3% H(2) in Ar undergoing supersonic expansion. The binding energy of this complex is addressed through quantum chemical calculations and measured nuclear quadrupole coupling constants for copper and deuterium. The significant change in the calculated binding energy and nuclear quadrupole coupling constants in relation to similar molecules suggest bonding greater than that typical of van der Waals interactions.

15.
J Phys Chem A ; 116(31): 8169-75, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22799501

ABSTRACT

Rotational spectra for hexafluoroisobutene, and its (13)C isotopologues, have been recorded between 8 and 16 GHz using a chirped pulse, Fourier transform microwave spectrometer. Notably, all spectra observed are doubled with separations between the doublets being between 1 and 60 MHz. We propose that the bis-trifluoromethyl groups of the target molecule are staggered in the equilibrium configuration, and that a novel, out-of-phase rotation through a F-CCC-F planar configuration with low barrier (<100 cm(-1)), leads to the observed doubled rotational spectra.

16.
J Chem Phys ; 133(24): 244303, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21197989

ABSTRACT

The Fourier transform microwave spectra of the various isotopologs of the weakly bound complex of carbon dioxide with the most abundant molecule in the atmosphere, nitrogen, have been measured. The structure of the complex has been determined and evidence for the inversion of the N(2) is presented. The molecule is T-shaped, with the OCO forming the cross of the T, a structure consistent with that deduced from a previous rotationally resolved infrared experiment. A significant wide-amplitude bending motion of the N(2) is deduced from the values of the (nearly identical) nuclear quadrupole coupling constants of the nitrogen nuclei. The spectroscopic results are compared with high-quality ab initio calculations. We examine the consequences of the N(2) CO(2) complex formation in the atmosphere upon the greenhouse warming potential of carbon dioxide.

17.
J Phys Chem A ; 114(3): 1427-31, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-19831342

ABSTRACT

Rotational spectra of cyclopentene oxide and the argon-cyclopentene oxide van der Waals complex were studied using pulsed-jet Fabry-Perot Fourier transform microwave (FTMW) spectroscopy. Spectra of the parent along with those of the (13)C and (18)O singly substituted isotopologues, in natural abundance, of the monomer and of the complex were measured in the frequency region of 5-26.5 GHz. The complete heavy atom substitution structure was determined for the monomer and complex. The boat structure for cyclopentene oxide was confirmed with naturally abundant (13)C and (18)O isotopes. For the argon cyclopentene oxide complex, both a and b-type transitions were observed and the rotational constants for the all-(12)C (16)O isotopologue were determined to be A = 3268.254(2), B = 993.345(1), and C = 950.430(9) MHz. The r(0) coordinates of the argon in the principal axis system of cyclopentene oxide are a = 0.27, b = 0.42, and c = 3.91 A, such that the argon is exo to the boat of the ring and on the opposite side of the ring from the oxygen and is 0.42 A off to the side and 0.27 A from the center of mass toward the back end of the ring (again away from the oxygen). Large amplitude van der Waals bending vibrations require an averaging model to account for differences between the observed complex and monomer planar moments of inertia.


Subject(s)
Argon/chemistry , Cyclopentanes/chemistry , Hydrophobic and Hydrophilic Interactions , Microwaves , Molecular Structure , Rotation , Spectrum Analysis
18.
J Phys Chem A ; 113(47): 13076-80, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19441806

ABSTRACT

The rotational spectrum of the argon-tropolone van der Waals complex in the ground vibrational state has been measured in the frequency range of 6-17 GHz using a pulsed-jet, Balle-Flygare-type Fourier transform microwave spectrometer. Eighty-six transitions for the complex (Ar-(12)C(7)H(6)(16)O(2)) were observed, assigned, and fit using a Watson A-reduction Hamiltonian giving the rotational and centrifugal distortion constants A = 1080.4365(3) MHz, B = 883.4943(3) MHz, C = 749.0571(2) MHz, Delta(J) = 2.591(2) kHz, Delta(JK) = -3.32(1) kHz, Delta(K) = 5.232(9) kHz, delta(J) = 0.944(1) kHz, and delta(K) = -0.028(8) kHz. The tunneling motion of the hydroxyl proton in the tropolone moiety is quenched in the ground electronic state by complexation with argon. The coordinates of the argon atom in the monomer's principal axis system are a = 0.43 A, b = 0.23 A, and c = 3.48 A.


Subject(s)
Argon/chemistry , Microwaves , Tropolone/chemistry , Hydrophobic and Hydrophilic Interactions
19.
J Chem Phys ; 130(12): 124317, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19334840

ABSTRACT

Eight isotopologues of HGeBr and nine of DGeBr have been studied in natural abundance by pulsed-jet Fourier transform microwave spectroscopy. The reactive germylene species were produced in an electric discharge at the exit of a pulsed molecular beam valve using precursor mixtures of H(3)GeBr or D(3)GeBr in high pressure neon. In the 5-25 GHz operating range of the spectrometer, only a-type transitions were observed; K = 0 transitions for HGeBr and K = 0 and 1 transitions for DGeBr. From the observed transitions, an improved molecular geometry has been determined and nuclear quadruple constants for Ge and Br have been determined. The Townes-Dailey model has been extended to obtain the electron densities of the 4p orbitals on the germanium and bromine atoms from the quadruple coupling constants. These results are discussed in terms of qualitative molecular orbital theory.

20.
J Chem Phys ; 127(18): 184306, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-18020638

ABSTRACT

Microwave spectra in the 7-26 MHz region have been measured for the van der Waals complexes, Ar-CH3CH2CH3, Ar-(13)CH3CH2CH3, 20Ne-CH3CH2CH3, and 22Ne-CH3CH2CH3. Both a- and c-type transitions are observed for the Ar-propane complex. The c-type transitions are much stronger indicating that the small dipole moment of the propane (0.0848 D) is aligned perpendicular to the van der Waals bond axis. While the 42 transition lines observed for the primary argon complex are well fitted to a semirigid rotor Hamiltonian, the neon complexes exhibit splittings in the rotational transitions which we attribute to an internal rotation of the propane around its a inertial axis. Only c-type transitions are observed for both neon complexes, and these are found to occur between the tunneling states, indicating that internal motion involves an inversion of the dipole moment of the propane. The difference in energy between the two tunneling states within the ground vibrational state is 48.52 MHz for 20Ne-CH3CH2CH3 and 42.09 MHz for 22Ne-CH3CH2CH3. The Kraitchman substitution coordinates of the complexes show that the rare gas is oriented above the plane of the propane carbons, but shifted away from the methylene carbon, more so in Ne propane than in Ar propane. The distance between the rare gas atom and the center of mass of the propane, Rcm, is 3.823 A for Ar-propane and 3.696 A for Ne-propane. Ab initio calculations are done to map out segments of the intermolecular potential. The global minimum has the rare gas almost directly above the center of mass of the propane, and there are three local minima with the rare gas in the plane of the carbon atoms. Barriers between the minima are also calculated and support the experimental results which suggest that the tunneling path involves a rotation of the propane subunit. The path with the lowest effective barrier is through a C2v symmetric configuration in which the methyl groups are oriented toward the rare gas. Calculating the potential curve for this one-dimensional model and then calculating the energy levels for this potential roughly reproduces the spectral splittings in Ne-propane and explains the lack of splittings in Ar-propane.

SELECTION OF CITATIONS
SEARCH DETAIL
...