Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6230, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266342

ABSTRACT

TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.


Subject(s)
Aneuploidy , DNA-Binding Proteins , Dioxygenases , Mouse Embryonic Stem Cells , Animals , Mice , 5-Methylcytosine/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Mouse Embryonic Stem Cells/metabolism , Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism
2.
Mol Biol Cell ; 33(3): ar28, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35020457

ABSTRACT

Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15-18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200-300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.


Subject(s)
Actin Cytoskeleton , Actins , Erythrocyte Membrane , Actin Cytoskeleton/metabolism , Actins/metabolism , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Spectrin/metabolism
3.
PLoS Comput Biol ; 16(5): e1007890, 2020 05.
Article in English | MEDLINE | ID: mdl-32453720

ABSTRACT

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous force distributions along the membrane and mimic the contractile activity of sparsely distributed NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham energy, we find that the RBC biconcave shape depends on the ratio of forces per unit volume in the dimple and rim regions of the RBC. Experimental measurements of NMIIA densities at the dimple and rim validate our prediction that (a) membrane forces must be non-uniform along the RBC membrane and (b) the force density must be larger in the dimple than the rim to produce the observed membrane curvatures. Furthermore, we predict that RBC membrane tension and the orientation of the applied forces play important roles in regulating this force-shape landscape. Our findings of heterogeneous force distributions on the plasma membrane for RBC shape maintenance may also have implications for shape maintenance in different cell types.


Subject(s)
Erythrocyte Deformability , Erythrocyte Membrane/physiology , Erythrocytes/cytology , Myosins/chemistry , Actin Cytoskeleton/chemistry , Cross-Linking Reagents/chemistry , Glycophorins/chemistry , Humans , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Microscopy, Fluorescence , Myosin Heavy Chains/chemistry , Phalloidine/chemistry , Rhodamines/chemistry , Stress, Mechanical
4.
Aging (Albany NY) ; 11(24): 12497-12531, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844034

ABSTRACT

Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.


Subject(s)
Aging/pathology , Lens, Crystalline/ultrastructure , Aging/physiology , Animals , Biomechanical Phenomena , Cataract/etiology , Female , Lens, Crystalline/physiology , Male , Mice, Inbred C57BL , Refraction, Ocular
5.
Am J Hematol ; 94(6): 667-677, 2019 06.
Article in English | MEDLINE | ID: mdl-30916803

ABSTRACT

MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability. Here, we tested the effects of MYH9 mutations in different NMIIA domains (motor, coiled-coil rod, or non-helical tail) on RBC NMIIA function. We found that MYH9-RD does not cause clinically significant anemia and that patient RBCs have normal osmotic deformability as well as normal membrane skeleton composition and micron-scale distribution. However, analysis of complete blood count data and peripheral blood smears revealed reduced hemoglobin content and elongated shapes, respectively, of MYH9-RD RBCs. Patients with mutations in the NMIIA motor domain had the highest numbers of elongated RBCs. Patients with mutations in the motor domain also had elevated association of NMIIA with F-actin at the RBC membrane. Our findings support a central role for motor domain activity in NMIIA regulation of RBC shape and define a new sub-clinical phenotype of MYH9-RD.


Subject(s)
Actins , Erythrocyte Membrane , Erythrocytes, Abnormal , Hearing Loss, Sensorineural , Mutation , Myosin Heavy Chains , Thrombocytopenia/congenital , Actins/genetics , Actins/metabolism , Erythrocyte Membrane/genetics , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Erythrocytes, Abnormal/metabolism , Erythrocytes, Abnormal/pathology , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
6.
J Cell Sci ; 131(23)2018 11 29.
Article in English | MEDLINE | ID: mdl-30333143

ABSTRACT

Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins/metabolism , Lens, Crystalline/metabolism , Tropomyosin/metabolism , Animals , Cell Differentiation , Mice
7.
Mol Biol Cell ; 29(16): 1963-1974, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30088796

ABSTRACT

The mouse eye lens was used as a model for multiscale transfer of loads. In the lens, compressive strain is distributed across specific lens tissue microstructures, including the extracellular capsule, as well as the epithelial and fiber cells. The removal of high loads resulted in complete recovery of most, but not all, microstructures.


Subject(s)
Lens Capsule, Crystalline/pathology , Stress, Mechanical , Animals , Biomechanical Phenomena , Cell Shape , Epithelial Cells/pathology , Mice, Inbred C57BL
8.
Proc Natl Acad Sci U S A ; 115(19): E4377-E4385, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29610350

ABSTRACT

The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.


Subject(s)
Actins/metabolism , Cell Shape/physiology , Erythrocyte Membrane/metabolism , Nonmuscle Myosin Type IIA/metabolism , Adenosine Triphosphate/metabolism , Cell Shape/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans
9.
Methods Mol Biol ; 1698: 205-228, 2018.
Article in English | MEDLINE | ID: mdl-29076092

ABSTRACT

During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.


Subject(s)
Erythroblasts/cytology , Erythroblasts/metabolism , Fluorescent Antibody Technique , Microscopy, Fluorescence , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Erythropoiesis , Female , Fetus , Image Processing, Computer-Assisted , Liver/cytology , Mice , Microscopy, Confocal , Microscopy, Fluorescence/methods , Pregnancy
10.
Proc Natl Acad Sci U S A ; 114(45): 11956-11961, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078393

ABSTRACT

Small heat shock protein HSPB7 is highly expressed in the heart. Several mutations within HSPB7 are associated with dilated cardiomyopathy and heart failure in human patients. However, the precise role of HSPB7 in the heart is still unclear. In this study, we generated global as well as cardiac-specific HSPB7 KO mouse models and found that loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality before embryonic day 12.5. Using biochemical and cell culture assays, we identified HSPB7 as an actin filament length regulator that repressed actin polymerization by binding to monomeric actin. Consistent with HSPB7's inhibitory effects on actin polymerization, HSPB7 KO mice had longer actin/thin filaments and developed abnormal actin filament bundles within sarcomeres that interconnected Z lines and were cross-linked by α-actinin. In addition, loss of HSPB7 resulted in up-regulation of Lmod2 expression and mislocalization of Tmod1. Furthermore, crossing HSPB7 null mice into an Lmod2 null background rescued the elongated thin filament phenotype of HSPB7 KOs, but double KO mice still exhibited formation of abnormal actin bundles and early embryonic lethality. These in vivo findings indicated that abnormal actin bundles, not elongated thin filament length, were the cause of embryonic lethality in HSPB7 KOs. Our findings showed an unsuspected and critical role for a specific small heat shock protein in directly modulating actin thin filament length in cardiac muscle by binding monomeric actin and limiting its availability for polymerization.


Subject(s)
Actin Cytoskeleton/metabolism , Cardiomyopathies/genetics , HSP27 Heat-Shock Proteins/genetics , Heart Defects, Congenital/genetics , Heart/embryology , Actin Cytoskeleton/genetics , Animals , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Myocardium/cytology , Myocytes, Cardiac/cytology , Organogenesis/genetics , Sarcomeres/metabolism , Tropomodulin/metabolism
11.
Blood ; 130(9): 1144-1155, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28729432

ABSTRACT

Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34+ hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species.


Subject(s)
Actins/metabolism , Cell Nucleus/metabolism , Erythroblasts/metabolism , Tropomodulin/metabolism , Animals , Bone Marrow/metabolism , Cell Differentiation , Cell Nucleus Shape , Cell Polarity , Fetus/metabolism , Gene Knockdown Techniques , Lamins/metabolism , Liver/embryology , Mice, Inbred C57BL , Nonmuscle Myosin Type IIB/metabolism , Protein Isoforms/metabolism
12.
Mol Biol Cell ; 28(19): 2531-2542, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28720661

ABSTRACT

The short F-actins in the red blood cell (RBC) membrane skeleton are coated along their lengths by an equimolar combination of two tropomyosin isoforms, Tpm1.9 and Tpm3.1. We hypothesized that tropomyosin's ability to stabilize F-actin regulates RBC morphology and mechanical properties. To test this, we examined mice with a targeted deletion in alternatively spliced exon 9d of Tpm3 (Tpm3/9d-/- ), which leads to absence of Tpm3.1 in RBCs along with a compensatory increase in Tpm1.9 of sufficient magnitude to maintain normal total tropomyosin content. The isoform switch from Tpm1.9/Tpm3.1 to exclusively Tpm1.9 does not affect membrane skeleton composition but causes RBC F-actins to become hyperstable, based on decreased vulnerability to latrunculin-A-induced depolymerization. Unexpectedly, this isoform switch also leads to decreased association of Band 3 and glycophorin A with the membrane skeleton, suggesting that tropomyosin isoforms regulate the strength of F-actin-to-membrane linkages. Tpm3/9d-/- mice display a mild compensated anemia, in which RBCs have spherocytic morphology with increased osmotic fragility, reduced membrane deformability, and increased membrane stability. We conclude that RBC tropomyosin isoforms directly influence RBC physiology by regulating 1) the stability of the short F-actins in the membrane skeleton and 2) the strength of linkages between the membrane skeleton and transmembrane glycoproteins.


Subject(s)
Actins/blood , Erythrocytes/cytology , Erythrocytes/metabolism , Tropomyosin/blood , Actin Cytoskeleton/metabolism , Animals , Male , Mice , Mice, Knockout , Polymerization , Protein Binding , Protein Isoforms , Tropomyosin/genetics , Tropomyosin/metabolism
13.
Exp Eye Res ; 156: 58-71, 2017 03.
Article in English | MEDLINE | ID: mdl-26971460

ABSTRACT

The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.


Subject(s)
Actin Cytoskeleton/physiology , Lens, Crystalline/embryology , Animals , Cell Differentiation/physiology , Epithelial Cells/metabolism , Humans , Lens, Crystalline/cytology , Lens, Crystalline/growth & development , Microfilament Proteins/metabolism
14.
Invest Ophthalmol Vis Sci ; 57(10): 4084-99, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27537257

ABSTRACT

PURPOSE: To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end-capping protein. METHODS: We investigated F-actin and F-actin-binding protein localization in interdigitations of Tmod1+/+ and Tmod1-/- single mature lens fibers. RESULTS: F-actin-rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1-/- mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, ß2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1-/- mature fibers, ß2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1-/- mature fibers. CONCLUSIONS: These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a ß2-spectrin-actin network stabilized by Tmod1. α-Actinin-crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin-associated proteins required for the formation of paddles between lens fibers.


Subject(s)
Actins/genetics , DNA/genetics , Lens, Crystalline/ultrastructure , Mutation , Tropomodulin/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Cell Differentiation , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Lens, Crystalline/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Tropomodulin/metabolism
15.
J Vis Exp ; (111)2016 05 03.
Article in English | MEDLINE | ID: mdl-27166880

ABSTRACT

The eye lens is a transparent organ that refracts and focuses light to form a clear image on the retina. In humans, ciliary muscles contract to deform the lens, leading to an increase in the lens' optical power to focus on nearby objects, a process known as accommodation. Age-related changes in lens stiffness have been linked to presbyopia, a reduction in the lens' ability to accommodate, and, by extension, the need for reading glasses. Even though mouse lenses do not accommodate or develop presbyopia, mouse models can provide an invaluable genetic tool for understanding lens pathologies, and the accelerated aging observed in mice enables the study of age-related changes in the lens. This protocol demonstrates a simple, precise, and cost-effective method for determining mouse lens stiffness, using glass coverslips to apply sequentially increasing compressive loads onto the lens. Representative data confirm that mouse lenses become stiffer with age, like human lenses. This method is highly reproducible and can potentially be scaled up to mechanically test lenses from larger animals.


Subject(s)
Accommodation, Ocular , Aging , Lens, Crystalline , Animals , Ciliary Body , Mice , Presbyopia
16.
Blood ; 126(4): 520-30, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-25964668

ABSTRACT

The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.


Subject(s)
Actin Cytoskeleton/pathology , Blood Platelets/pathology , Cell Membrane/pathology , Embryo, Mammalian/pathology , Hemorrhage/etiology , Megakaryocytes/pathology , Tropomodulin/physiology , Actin Cytoskeleton/metabolism , Animals , Apoptosis , Blood Platelets/metabolism , Blotting, Western , Cell Membrane/metabolism , Cell Proliferation , Cells, Cultured , Cytoplasm/metabolism , Embryo, Mammalian/metabolism , Female , Fluorescent Antibody Technique , Hematopoiesis/physiology , Hemorrhage/metabolism , Hemorrhage/pathology , Immunoprecipitation , Megakaryocytes/metabolism , Mice , Mice, Knockout , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Ploidies , Polymerization
17.
Am J Physiol Cell Physiol ; 308(10): C835-47, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25740157

ABSTRACT

The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance.


Subject(s)
Connexins/metabolism , Gap Junctions/metabolism , Homeostasis/physiology , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Animals , Cell Differentiation , Cytoskeleton/metabolism , Eye Proteins/metabolism , Intermediate Filament Proteins/metabolism , Ion Channels/metabolism , Mice, Knockout , Mice, Transgenic
18.
Mol Biol Cell ; 26(9): 1699-710, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25717184

ABSTRACT

Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (~25-30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ~60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/physiology , Erythrocytes/metabolism , Actins/metabolism , Biomechanical Phenomena , Humans , Osmotic Fragility , Protein Multimerization
19.
Dev Dyn ; 243(6): 800-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24500875

ABSTRACT

BACKGROUND: We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS: Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS: Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.


Subject(s)
Adherens Junctions/metabolism , Cell Communication/physiology , Embryo, Mammalian/embryology , Heart/embryology , Morphogenesis/physiology , Tropomyosin/metabolism , Adherens Junctions/genetics , Animals , Embryo, Mammalian/cytology , Mice , Mice, Knockout , Tropomyosin/genetics
20.
Blood ; 123(5): 758-67, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24159174

ABSTRACT

Tropomodulin (Tmod) is a protein that binds and caps the pointed ends of actin filaments in erythroid and nonerythoid cell types. Targeted deletion of mouse tropomodulin3 (Tmod3) leads to embryonic lethality at E14.5-E18.5, with anemia due to defects in definitive erythropoiesis in the fetal liver. Erythroid burst-forming unit and colony-forming unit numbers are greatly reduced, indicating defects in progenitor populations. Flow cytometry of fetal liver erythroblasts shows that late-stage populations are also decreased, including reduced percentages of enucleated cells. Annexin V staining indicates increased apoptosis of Tmod3(-/-) erythroblasts, and cell-cycle analysis reveals that there are more Ter119(hi) cells in S-phase in Tmod3(-/-) embryos. Notably, enucleating Tmod3(-/-) erythroblasts are still in the process of proliferation, suggesting impaired cell-cycle exit during terminal differentiation. Tmod3(-/-) late erythroblasts often exhibit multilobular nuclear morphologies and aberrant F-actin assembly during enucleation. Furthermore, native erythroblastic island formation was impaired in Tmod3(-/-) fetal livers, with Tmod3 required in both erythroblasts and macrophages. In conclusion, disruption of Tmod3 leads to impaired definitive erythropoiesis due to reduced progenitors, impaired erythroblastic island formation, and defective erythroblast cell-cycle progression and enucleation. Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion, coordination of cell cycle with differentiation, and F-actin assembly and remodeling during erythroblast enucleation.


Subject(s)
Erythroid Precursor Cells/metabolism , Gene Deletion , Liver/embryology , Tropomodulin/genetics , Animals , Apoptosis , Cell Cycle , Erythroblasts/cytology , Erythroblasts/metabolism , Erythroid Precursor Cells/cytology , Erythropoiesis , Female , Gene Expression Regulation, Developmental , Liver/metabolism , Male , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...