Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS ES T Water ; 4(4): 1763-1774, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633363

ABSTRACT

Progress toward universal access to safe drinking water depends on rural water service delivery models that incorporate water safety management. Water supplies of all types have high rates of fecal contamination unless water safety risks are actively managed through water source protection, treatment, distribution, and storage. Recognizing the role of treatment within this broader risk-based framework, this study focuses on the implementation of passive chlorination and ultraviolet (UV) disinfection technologies in rural settings. These technologies can reduce the health risk from microbiological contaminants in drinking water; however, technology-focused treatment interventions have had limited sustainability in rural settings. This study examines the requirements for sustainable implementation of rural water treatment through qualitative content analysis of 26 key informant interviews, representing passive chlorination and UV disinfection projects in rural areas in South America, Africa, and Asia. The analysis is aligned with the RE-AIM framework and delivers insight into 18 principal enablers and barriers to rural water treatment sustainability. Analysis of the interrelationships among these factors identifies leverage points and encourages fit-for-purpose intervention design reinforced by collaboration between facilitating actors through hybrid service delivery models. Further work should prioritize health impact evidence, water quality reporting guidance, and technological capabilities that optimize trade-offs in fit-for-purpose treatment design.

2.
Sci Total Environ ; 904: 166929, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37689199

ABSTRACT

Reliance on groundwater is increasing in Sub-Saharan Africa as development programmes work towards improving water access and strengthening resilience to climate change. In lower-income areas, groundwater supplies are typically installed without water quality treatment infrastructure or services. This practice is underpinned by an assumption that untreated groundwater is typically suitable for drinking due to the relative microbiological safety of groundwater compared to surface water; however, chemistry risks are largely disregarded. This article systematically reviews groundwater chemistry results from 160 studies to evaluate potential health risk in two case countries: Ethiopia and Kenya. Most studies evaluated drinking water suitability, focusing on priority parameters (fluoride, arsenic, nitrate, or salinity; 18 %), pollution impacts (10 %), or overall suitability (45 %). The remainder characterised general hydrogeochemistry (13 %), flow dynamics (10 %), or water quality suitability for irrigation (3 %). Only six studies (4 %) reported no exceedance of drinking water quality thresholds. Thus, chemical contaminants occur widely in groundwaters that are used for drinking but are not regularly monitored: 78 % of studies reported exceedance of contaminants that have direct health consequences ranging from hypertension to disrupted cognitive development and degenerative disease, and 81 % reported exceedance of aesthetic parameters that have indirect health impacts by influencing perception and use of groundwater versus surface water. Nevertheless, the spatiotemporal coverage of sampling has substantial gaps and data availability bias is driven by a) the tendency for research to concentrate in areas with known water quality problems, and b) analytical capacity limitations. Improved in-country analytical capacity could bolster more efficient assessment and prioritisation of water chemistry risks. Overall, this review demonstrates that universal and equitable access to safe drinking water (Sustainable Development Goal target 6.1) will not be achieved without wider implementation of groundwater treatment, thus a shift is required in how water systems are designed and managed.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Water Supply/methods , Environmental Monitoring/methods , Ethiopia , Kenya , Groundwater/chemistry , Water Quality , Water Pollutants, Chemical/analysis
3.
Article in English | MEDLINE | ID: mdl-35010851

ABSTRACT

Reducing disease from unsafe drinking-water is a key environmental health objective in rural Sub-Saharan Africa, where water management is largely community-based. The effectiveness of environmental health risk reporting to motivate sustained behaviour change is contested but as efforts to increase rural drinking-water monitoring proceed, it is timely to ask how water quality information feedback can improve water safety management. Using cross-sectional (1457 households) and longitudinal (167 participants) surveys, semi-structured interviews (73 participants), and water quality monitoring (79 sites), we assess water safety perceptions and evaluate an information intervention through which Escherichia coli monitoring results were shared with water managers over a 1.5-year period in rural Kitui County, Kenya. We integrate the extended parallel process model and the precaution adoption process model to frame risk information processing and stages of behaviour change. We highlight that responses to risk communications are determined by the specificity, framing, and repetition of messaging and the self-efficacy of information recipients. Poverty threatscapes and gender norms hinder behaviour change, particularly at the household-level; however, test results can motivate supply-level managers to implement hazard control measures-with effectiveness and sustainability dependent on infrastructure, training, and ongoing resourcing. Our results have implications for rural development efforts and environmental risk reporting in low-income settings.


Subject(s)
Drinking Water , Water Quality , Cross-Sectional Studies , Environmental Health , Fear , Humans , Kenya , Poverty , Rural Population , Water Supply
4.
PLoS One ; 16(1): e0245910, 2021.
Article in English | MEDLINE | ID: mdl-33481909

ABSTRACT

Across the water sector, Escherichia coli is the preferred microbial water quality indicator and current guidance upholds that it indicates recent faecal contamination. This has been challenged, however, by research demonstrating growth of E. coli in the environment. In this study, we used whole genome sequencing to investigate the links between E. coli and recent faecal contamination in drinking water. We sequenced 103 E. coli isolates sampled from 9 water supplies in rural Kitui County, Kenya, including points of collection (n = 14) and use (n = 30). Biomarkers for definitive source tracking remain elusive, so we analysed the phylogenetic grouping, multi-locus sequence types (MLSTs), allelic diversity, and virulence and antimicrobial resistance (AMR) genes of the isolates for insight into their likely source. Phylogroup B1, which is generally better adapted to water environments, is dominant in our samples (n = 69) and allelic diversity differences (z = 2.12, p = 0.03) suggest that naturalised populations may be particularly relevant at collection points with lower E. coli concentrations (<50 / 100mL). The strains that are more likely to have originated from human and/or recent faecal contamination (n = 50), were found at poorly protected collection points (4 sites) or at points of use (12 sites). We discuss the difficulty of interpreting health risk from E. coli grab samples, especially at household level, and our findings support the use of E. coli risk categories and encourage monitoring that accounts for sanitary conditions and temporal variability.


Subject(s)
Drinking Water/microbiology , Escherichia coli/isolation & purification , Water Quality , Water Supply , Escherichia coli/genetics , Humans , Kenya , Whole Genome Sequencing
5.
Sci Total Environ ; 646: 782-791, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30064104

ABSTRACT

Microbial water quality is frequently assessed with a risk indicator approach that relies on Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource settings, and we argue that risk assessments could be improved by a complementary parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and thermotolerant coliforms (total n = 1082). Using three World Health Organization defined classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly different from risk indicated by E. coli (p = 0.85). However, the TLF and E. coli risk classifications did show disagreement, with TLF indicating higher risk for 14% of samples and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated that precision is higher for TLF (average relative percent difference of duplicates = 14%) compared to culture-based methods (average RPD of duplicates ≥ 26%). Additionally, TLF sampling is more practical because it requires less time and resources. Precision and practicality make TLF well-suited to high-frequency sampling in low resource contexts. Interpretation and interference challenges are minimised when TLF is measured in groundwaters, which typically have low dissolved organic carbon, relatively consistent temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for E. coli on an individual sample basis, but it can add value to groundwater risk assessments by improving prioritization of sampling and by increasing understanding of spatiotemporal variability.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Microbiology , Escherichia coli , Kenya , Tryptophan/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...