Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 81: 113-125, 2018 04.
Article in English | MEDLINE | ID: mdl-29273469

ABSTRACT

BACKGROUND: Loss of adequate insulin secretion for the prevailing insulin resistance is critical for the development of type 2 diabetes and has been suggested to result from circulating lipids (triacylglycerols [TG] or free fatty acids) and/or adipocytokines or from ectopic lipid storage in the pancreas. This study aimed to address whether circulating lipids, adipocytokines or pancreatic fat primarily associates with lower insulin secretion. SUBJECTS/METHODS: Nondiabetic persons (n=73), recruited from the general population, underwent clinical examinations, fasting blood drawing to measure TG and adipocytokines and oral glucose tolerance testing (OGTT) to assess basal and dynamic insulin secretion and sensitivity indices. Magnetic resonance imaging and 1H-magnetic resonance spectroscopy were used to measure body fat distribution and ectopic fat content in liver and pancreas. RESULTS: In age-, sex- and BMI-adjusted analyses, total and high-molecular-weight adiponectin were the strongest negative predictors of fasting beta-cell function (BCF; ß=-0.403, p=0.0003 and ß=-0.237, p=0.01, respectively) and adaptation index (AI; ß=-0.210, p=0.006 and ß=-0.133, p=0.02, respectively). Circulating TG, but not pancreatic fat content, related positively to BCF (ß=0.375, p<0.0001) and AI (ß=0.192, p=0.003). Similar results were obtained for the disposition index (DI). CONCLUSIONS: The association of serum lipids and adiponectin with beta-cell function may represent a compensatory response to adapt for lower insulin sensitivity in nondiabetic humans.


Subject(s)
Insulin-Secreting Cells/physiology , Insulin/metabolism , Lipids/physiology , Triglycerides/blood , Adiponectin/blood , Aged , Fatty Acids, Nonesterified/blood , Female , Humans , Insulin Resistance , Insulin Secretion , Male , Middle Aged
2.
J Clin Endocrinol Metab ; 103(2): 460-468, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29140513

ABSTRACT

Objective: Hepatic energy metabolism negatively relates to insulin resistance and liver fat content in patients with type 2 diabetes, but its role in metabolically healthy humans is unclear. We hypothesized that intrahepatocellular γ-adenosine triphosphate (γATP) and inorganic phosphate (Pi) concentrations exhibit similar associations with insulin sensitivity in nondiabetic, nonobese volunteers. Design: A total of 76 participants underwent a four-point sampling, 75-g oral glucose tolerance test (OGTT), as well as in vivo31P/1H magnetic resonance spectroscopy. In 62 of them, targeted plasma metabolomic profiling was performed. Pearson correlation analyses were performed for the dependent variables γATP and Pi. Results: Adjusted for age, sex, and body mass index (BMI), hepatic γATP and Pi related to 2-hour OGTT glucose (r = 0.25 and r = 0.27, both P < 0.05), and Pi further associated with nonesterified fatty acids (NEFAs; r = 0.28, P < 0.05). However, neither γATP nor Pi correlated with several measures of insulin sensitivity. Hepatic γATP correlated with circulating leucine (r = 0.42, P < 0.001) and Pi with C16:1 fatty acids palmitoleic acid and C16:1w5 (r = 0.28 and 0.30, respectively, P < 0.01), as well as with δ-9-desaturase index (r = 0.33, P < 0.05). Only the association of γATP with leucine remained important after correction for multiple testing. Leucine and palmitoleic acid, together with age, sex, and BMI, accounted for 26% and for 15% of the variabilities in γATP and Pi, respectively. Conclusions: Specific circulating amino acids and NEFAs, but not measures of insulin sensitivity, partly affect hepatic phosphorus metabolites, suggesting mutual interaction between hepatic energy metabolism and circulating metabolites in nondiabetic humans.


Subject(s)
Amino Acids/metabolism , Fatty Acids/metabolism , Health , Liver/metabolism , Phosphorus/metabolism , Adult , Aged , Cohort Studies , Energy Metabolism/physiology , Feasibility Studies , Female , Glucose Tolerance Test , Humans , Male , Metabolome , Middle Aged , Young Adult
4.
Diabetes Care ; 38(9): 1750-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26070589

ABSTRACT

OBJECTIVE: The autonomic nervous system (ANS) regulates both the cardiovascular system and energy balance and is disturbed in diabetes and obesity. The effect of different approaches of caloric restriction on ANS function has not been assessed in individuals with diabetes. Thus, we sought to determine whether low-energy diets differing in fiber, red meat, and coffee intake exert differential effects on cardiac autonomic function. RESEARCH DESIGN AND METHODS: In this randomized parallel-group pilot trial, obese patients with type 2 diabetes were randomly allocated to consume either a diet high in cereal fiber, free of red meat, and high in coffee (n = 13) or a diet low in fiber, high in red meat, and coffee free (n = 15) over 8 weeks. Eight measures of heart rate variability (HRV) indicating vagal and/or sympathetic modulation over 3 h and inflammatory markers were determined during a hyperinsulinemic-euglycemic clamp. RESULTS: After 8 weeks, both dietary interventions resulted in a mean weight loss of 5-6 kg, a mean decline in heart rate of 4-6 bpm, and improvement in vagally mediated HRV. However, the changes in HRV parameters from baseline to 8 weeks did not differ between the groups. In the entire study cohort, incremental HRV from baseline to 8 weeks was associated with enhanced oxidative glucose utilization (P < 0.05), but not with insulin sensitivity and inflammatory markers. CONCLUSIONS: In obese patients with type 2 diabetes, energy restriction per se over 8 weeks contributed to improved cardiac vagal function in relation to improved oxidative glucose utilization. This preliminary finding should be verified in a confirmatory trial.


Subject(s)
Caloric Restriction , Coffee , Diabetes Mellitus, Type 2/diet therapy , Dietary Fiber , Obesity/drug therapy , Red Meat , Adult , Autonomic Nervous System/physiopathology , Diabetes Mellitus, Type 2/complications , Energy Metabolism/physiology , Female , Humans , Male , Middle Aged , Obesity/complications
5.
PLoS One ; 10(4): e0124242, 2015.
Article in English | MEDLINE | ID: mdl-25893426

ABSTRACT

UNLABELLED: The autonomic nervous system (ANS) plays an important role in regulating the metabolic homeostasis and controlling immune function. ANS alterations can be detected by reduced heart rate variability (HRV) in conditions like diabetes and sepsis. We determined the effects of experimental conditions mimicking inflammation and hyperlipidemia on HRV and heart rate (HR) in relation to the immune, metabolic, and hormonal responses resulting from these interventions. Sixteen lean healthy subjects received intravenous (i.v.) low-dose endotoxin (lipopolysaccharide [LPS]), i.v. fat, oral fat, and i.v. glycerol (control) for 6 hours, during which immune, metabolic, hormonal, and five HRV parameters (pNN50, RMSSD, low-frequency (LF) and high-frequency (HF) power, and LF/HF ratio) were monitored and energy metabolism and insulin sensitivity (M-value) were assessed. LPS infusion induced an increase (AUC) in HR and LF/HF ratio and decline in pNN50 and RMSSD, while oral fat resulted in elevated HR and a transient (hours 1-2) decrease in pNN50, RMSSD, and HF power. During LPS infusion, ΔIL-1ra levels and ΔIL-1ra and ΔIL-1ß gene expression correlated positively with ΔLF/HF ratio and inversely with ΔRMSSD. During oral fat intake, ΔGLP-1 tended to correlate positively with ΔHR and inversely with ΔpNN50 and ΔRMSSD. Following LPS infusion, lipid oxidation correlated positively with HR and inversely with pNN50 and RMSSD, whereas HRV was not related to M-value. In conclusion, suppression of vagal tone and sympathetic predominance during endotoxemia are linked to anti-inflammatory processes and lipid oxidation but not to insulin resistance, while weaker HRV changes in relation to the GLP-1 response are noted during oral fat load. TRIAL REGISTRATION: ClinicalTrials.gov NCT01054989.


Subject(s)
Autonomic Nervous System/physiopathology , Endotoxemia/physiopathology , Heart/innervation , Adult , Area Under Curve , Calorimetry , Cross-Over Studies , Diabetes Mellitus/physiopathology , Endotoxins/chemistry , Female , Heart Rate , Homeostasis , Humans , Inflammation , Insulin Resistance , Lipopolysaccharides/chemistry , Male , Sepsis/physiopathology , Vagus Nerve/pathology , Young Adult
6.
Diabetologia ; 58(2): 255-64, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25425219

ABSTRACT

AIMS/HYPOTHESIS: Epidemiological studies have found that a diet high in fibre and coffee, but low in red meat, reduces the risk for type 2 diabetes. We tested the hypothesis that these nutritional modifications differentially improve whole-body insulin sensitivity (primary outcome) and secretion. METHODS: Inclusion criteria were: age 18-69 years, BMI ≥ 30 kg/m(2), type 2 diabetes treated with diet, metformin or acarbose and known disease duration of ≤ 5 years. Exclusion criteria were: HbA1c >75 mmol/mol (9.0%), type 1 or secondary diabetes types and acute or chronic diseases including cancer. Patients taking any medication affecting the immune system or insulin sensitivity, other than metformin, were also excluded. Of 59 patients (randomised using randomisation blocks [four or six patients] with consecutive numbers), 37 (54% female) obese type 2 diabetic patients completed this controlled parallel-group 8-week low-energy dietary intervention. The participants consumed either a diet high in cereal fibre (whole grain wheat/rye: 30-50 g/day) and coffee (≥ 5 cups/day), and free of red meat (L-RISK, n = 17) or a diet low in fibre (≤ 10 g/day), coffee-free and high in red meat (≥ 150 g/day) diet (H-RISK, n = 20). Insulin sensitivity and secretion were assessed by hyperinsulinaemic-euglycaemic clamp and intravenous glucose tolerance tests with isotope dilution. Whole-body and organ fat contents were measured by magnetic resonance imaging and spectroscopy. RESULTS: Whole-body insulin sensitivity increased in both groups (mean [95% CI]) (H-RISK vs L-RISK: 0.8 [0.2, 1.4] vs 1.0 [0.4, 1.7]mg kg(-1) min(-1), p = 0.59), while body weight decreased (-4.8% [-6.1%, -3.5%] vs -4.6% [-6.0%, -3.3%], respectively). Hepatic insulin sensitivity remained unchanged, whereas hepatocellular lipid content fell in both groups (-7.0% [-9.6%, -4.5%] vs -6.7% [-9.5%, -3.9%]). Subcutaneous fat mass (-1,553 [-2,767, -340] cm(3) vs -751 [-2,047; 546] cm(3), respectively) visceral fat mass (-206 [-783, 371] cm(3) vs -241 [-856, 373] cm(3), respectively) and muscle fat content (-0.09% [-0.16%, -0.02%] vs -0.02% [-0.10%, 0.05%], respectively) decreased similarly. Insulin secretion remained unchanged, while the proinflammatory marker IL-18 decreased only after the L-RISK diet. CONCLUSIONS/INTERPRETATION: No evidence of a difference between both low-energy diets was identified. Thus, energy restriction per se seems to be key for improving insulin action in phases of active weight loss in obese type 2 diabetic patients, with a potential improvement of subclinical inflammation with the L-RISK diet. TRIAL REGISTRATION: Clinicaltrials.gov NCT01409330. FUNDING: This study was supported by the Ministry of Science and Research of the State of North Rhine-Westphalia (MIWF NRW), the German Federal Ministry of Health (BMG), the Federal Ministry for Research (BMBF) to the Center for Diabetes Research (DZD e.V.) and the Helmholtz Alliance Imaging and Curing Environmental Metabolic Diseases (ICEMED).


Subject(s)
Caloric Restriction/methods , Coffee , Diabetes Mellitus, Type 2/diet therapy , Dietary Fiber , Meat , Obesity/diet therapy , Weight Loss , Adult , Aged , Animals , Body Mass Index , Cattle , Diabetes Mellitus, Type 2/metabolism , Edible Grain , Feasibility Studies , Female , Follow-Up Studies , Glucose Clamp Technique , Humans , Insulin Resistance , Male , Middle Aged , Obesity/metabolism , Treatment Outcome
7.
Diabetologia ; 57(10): 2094-102, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25047649

ABSTRACT

AIMS/HYPOTHESIS: The combined IVGTT-hyperinsulinaemic-euglycaemic clamp (Botnia clamp) allows the assessment of insulin secretion and sensitivity in one experiment. It remains unclear whether this clamp yields results comparable with those of the standard hyperinsulinaemic-euglycaemic clamp (SHEC) in diabetes patients. We hypothesised that the IVGTT induces responses affecting insulin sensitivity assessment. METHODS: Of 22 randomised diet- or metformin-treated patients with well-controlled type 2 diabetes, 19 randomly underwent a Botnia clamp and an SHEC, spaced by 2 weeks, in one clinical research centre in a crossover study. The main outcomes were whole-body and hepatic insulin sensitivity as measured by the clamp and [6,6-(2)H2]glucose. Substrate utilisation was assessed from indirect calorimetry and beta cell function from insulin dynamics during IVGTT. RESULTS: The values of whole-body insulin sensitivity obtained from Botnia clamp and SHEC were correlated (r = 0.87, p < 0.001), but also revealed intra-individual variations. Hepatic insulin sensitivity did not differ between experiments during the clamp, but differed after IVGTT. The contribution of glucose oxidation to glucose disposal increased by 2.2 ± 0.3 and 1.2 ± 0.4 mg kg fat-free mass (FFM)(-1) min(-1) (Botnia and SHEC, p < 0.05), whereas lipid oxidation decreased by 0.8 ± 0.1 and 0.4 ± 0.1 mg kg FFM(-1) min(-1) (p < 0.05) from baseline. Differences in NEFA (r = -0.60, p < 0.01), but not C-peptide (r = -0.16, p = 0.52) or hepatic insulin sensitivity between IVGTT and placebo before the clamps correlated with individual variations of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The Botnia clamp provides similar estimates of insulin sensitivity as SHEC in patients with type 2 diabetes, but changes in NEFA during IVGTT may affect insulin sensitivity and thereby the discrimination between insulin-sensitive and insulin-resistant individuals. TRIAL REGISTRATION: ClinicalTrials.gov NCT01397279 FUNDING: The study was funded by the Ministry of Science and Research of the State of North Rhine-Westphalia and the German Federal Ministry of Health, and supported in part by grants from the Federal Ministry for Research to the Centers for Diabetes Research, Helmholtz Alliance Imaging and Curing Environmental Metabolic Diseases and the Schmutzler-Stiftung.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Insulin/therapeutic use , Lipolysis/drug effects , Adult , Blood Glucose/drug effects , Calorimetry, Indirect , Diabetes Mellitus, Type 2/metabolism , Female , Gas Chromatography-Mass Spectrometry , Glucose Clamp Technique , Humans , Insulin Resistance , Male , Middle Aged
8.
Diabetes ; 62(7): 2240-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23454694

ABSTRACT

Several mechanisms, such as innate immune responses via Toll-like receptor-4, accumulation of diacylglycerols (DAG)/ceramides, and activation of protein kinase C (PKC), are considered to underlie skeletal muscle insulin resistance. In this study, we examined initial events occurring during the onset of insulin resistance upon oral high-fat loading compared with lipid and low-dose endotoxin infusion. Sixteen lean insulin-sensitive volunteers received intravenous fat (iv fat), oral fat (po fat), intravenous endotoxin (lipopolysaccharide [LPS]), and intravenous glycerol as control. After 6 h, whole-body insulin sensitivity was reduced by iv fat, po fat, and LPS to 60, 67, and 48%, respectively (all P < 0.01), which was due to decreased nonoxidative glucose utilization, while hepatic insulin sensitivity was unaffected. Muscle PKCθ activation increased by 50% after iv and po fat, membrane Di-C18:2 DAG species doubled after iv fat and correlated with PKCθ activation after po fat, whereas ceramides were unchanged. Only after LPS, circulating inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1 receptor antagonist), their mRNA expression in subcutaneous adipose tissue, and circulating cortisol were elevated. Po fat ingestion rapidly induces insulin resistance by reducing nonoxidative glucose disposal, which associates with PKCθ activation and a rise in distinct myocellular membrane DAG, while endotoxin-induced insulin resistance is exclusively associated with stimulation of inflammatory pathways.


Subject(s)
Insulin Resistance/physiology , Lipids/pharmacology , Liver/metabolism , Muscle, Skeletal/metabolism , Administration, Intravenous , Administration, Oral , Adult , Blood Glucose/metabolism , Calorimetry, Indirect , Female , Humans , Insulin/metabolism , Interleukin-6/metabolism , Lipids/administration & dosage , Lipopolysaccharides/pharmacology , Liver/drug effects , Male , Muscle, Skeletal/drug effects , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...