Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1658, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105904

ABSTRACT

More than 10% of women diagnosed with breast cancer during reproductive age carry hereditary germline pathogenic variants in high-penetrance BRCA genes or in others genes involved in DNA repair mechanisms such as PALB2, BRIP or ATM. Anticancer treatments may have an additional negative impact on the ovarian reserve and subsequently on the fertility of young patients carrying such mutations. Recently, the combination of carboplatin and paclitaxel is being recommended to these BRCA-mutated patients as neoadjuvant therapy. However, the impact on the ovary is unknown. Here, we investigated their effect of on the ovarian reserve using mice carriers of BRCA1-interacting protein C-terminal helicase-1 (BRIP1) mutation that plays an important role in BRCA1-dependent DNA repair. Results revealed that the administration of carboplatin or paclitaxel did not affect the ovarian reserve although increased DNA double-strand breaks were observed with carboplatin alone. Co-administration of carboplatin and paclitaxel resulted in a significant reduction of the ovarian reserve leading to a lower IVF performance, and an activation of the PI3K-Pten pathway, irrespective of the genetic background. This study suggests that co-administration of carboplatin and paclitaxel induces cumulative ovarian damage and infertility but a heterozygote genetic predisposition for DNA damage related to BRCA1 gene function does not increase this risk.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Carboplatin/adverse effects , Fanconi Anemia Complementation Group Proteins/genetics , Genes, Tumor Suppressor , Germ-Line Mutation , Ovarian Reserve/drug effects , Paclitaxel/adverse effects , RNA Helicases/genetics , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carboplatin/administration & dosage , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , DNA Repair/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Female , Fertilization in Vitro/methods , Heterozygote , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Paclitaxel/administration & dosage
2.
Hum Reprod ; 34(3): 403-413, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30753464

ABSTRACT

STUDY QUESTION: Can full spermatogenesis be achieved after xenotransplantation of prepubertal primate testis tissue to the mouse, in testis or subcutaneously? SUMMARY ANSWER: Intratesticular xenotransplantation supported the differentiation of immature germ cells from marmoset (Callithrix jacchus) into spermatids and spermatozoa at 4 and 9 months post-transplantation, while in subcutaneous transplants, spermatogenic arrest was observed at 4 months and none of the transplants survived at 9 months. WHAT IS KNOWN ALREADY: Auto-transplantation of cryopreserved immature testis tissue (ITT) could be a potential fertility restoration strategy for patients with complete loss of germ cells due to chemo- and/or radiotherapy at a young age. Before ITT transplantation can be used for clinical application, it is a prerequisite to demonstrate the feasibility of the technique and identify the conditions required for establishing spermatogenesis in primate ITT transplants. Although xenotransplantation of ITT from several species has resulted in complete spermatogenesis, in human and marmoset, ITT has not been successful. STUDY DESIGN, SIZE, DURATION: In this study, we used marmoset as a pre-clinical animal model. ITT was obtained from two 6-month-old co-twin marmosets. A total of 147 testis tissue pieces (~0.8-1.0 mm3 each) were transplanted into the testicular parenchyma (intratesticular; n = 40) or under the dorsal skin (ectopic; n = 107) of 4-week-old immunodeficient Swiss Nu/Nu mice (n = 20). Each mouse received one single marmoset testis tissue piece in each testis and 4-6 pieces subcutaneously. Xenotransplants were retrieved at 4 and 9 months post-transplantation and evaluations were performed with regards to transplant survival, spermatogonial quantity and germ cell differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Transplant survival was histologically evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Spermatogonia were identified by MAGE-A4 via immunohistochemistry. Germ cell differentiation was assessed by morphological identification of different germ cell types on H/PAS stained sections. Meiotically active germ cells were identified by BOLL expression. CREM immunohistochemistry was performed to confirm the presence of post-meiotic germ cells and ACROSIN was used to determine the presence of round, elongating and elongated spermatids. MAIN RESULTS AND THE ROLE OF CHANCE: Four months post-transplantation, 50% of the intratesticular transplants and 21% of the ectopic transplants were recovered (P = 0.019). The number of spermatogonia per tubule did not show any variation. In 33% of the recovered intratesticular transplants, complete spermatogenesis was established. Overall, 78% of the intratesticular transplants showed post-meiotic differentiation (round spermatids, elongating/elongated spermatids and spermatozoa). However, during the same period, spermatocytes (early meiotic germ cells) were the most advanced germ cell type present in the ectopic transplants. Nine months post-transplantation, 50% of the intratesticular transplants survived, whilst none of the ectopic transplants was recovered (P < 0.0001). Transplants contained more spermatogonia per tubule (P = 0.018) than at 4 months. Complete spermatogenesis was observed in all recovered transplants (100%), indicating a progressive spermatogenic development in intratesticular transplants between the two time-points. Nine months post-transplantation, transplants contained more seminiferous tubules with post-meiotic germ cells (37 vs. 5%; P < 0.001) and fewer tubules without germ cells (2 vs. 8%; P = 0.014) compared to 4 months post-transplantation. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although xenotransplantation of marmoset ITT was successful, it does not fully reflect all aspects of a future clinical setting. Furthermore, due to ethical restrictions, we were not able to prove the functionality of the spermatozoa produced in the marmoset transplants. WIDER IMPLICATIONS OF THE FINDINGS: In this pre-clinical study, we demonstrated that testicular parenchyma provides the required microenvironment for germ cell differentiation and long-term survival of immature marmoset testis tissue, likely due to the favourable temperature regulation, growth factors and hormonal support. These results encourage the design of new experiments on human ITT xenotransplantation and show that intratesticular transplantation is likely to be superior to ectopic transplantation for fertility restoration following gonadotoxic treatment in childhood. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by the ITN Marie Curie Programme 'Growsperm' (EU-FP7-PEOPLE-2013-ITN 603568) and the scientific Fund Willy Gepts from the UZ Brussel (ADSI677). D.V.S. is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared.


Subject(s)
Spermatogenesis , Testis/physiology , Testis/transplantation , Animals , Callithrix , Cell Differentiation , Cryopreservation , Germ Cells/cytology , Male , Mice , Seminiferous Tubules/physiology , Sertoli Cells/physiology , Spermatids/physiology , Spermatogonia/physiology , Spermatozoa/physiology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...