Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
J Therm Biol ; 113: 103527, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055131

ABSTRACT

Physiological stress patterns of marine organisms in their natural habitats are considerably complex in space and time. These patterns can eventually contribute in the shaping of fish' thermal limits under natural conditions. In the view of the knowledge gap regarding red porgy's thermal physiology, in combination with the characterization of the Mediterranean Sea as a climate change ''hotspot'', the aim of the present study was to investigate this species biochemical responses to constantly changing field conditions. To achieve this goal, Heat Shock Response (HSR), MAPKs pathway, autophagy, apoptosis, lipid peroxidation and antioxidant defense were estimated and exhibited a seasonal pattern. In general, all the examined biochemical indicators expressed high levels parallel to the increasing seawater temperature in spring, although several bio-indicators have shown increased levels when fish were cold-acclimatized. Similar to other sparids, the observed patterns of physiological responses in red porgy may support the concept of eurythermy.


Subject(s)
Antioxidants , Perciformes , Animals , Antioxidants/metabolism , Perciformes/physiology , Stress, Physiological , Heat-Shock Response/physiology , Fishes/metabolism
3.
Nat Aging ; 3(1): 64-81, 2023 01.
Article in English | MEDLINE | ID: mdl-36743663

ABSTRACT

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Aged , Plaque, Atherosclerotic/metabolism , Bone Marrow/metabolism , Integrin beta3/metabolism , Atherosclerosis/genetics , Myocytes, Smooth Muscle , Muscle, Smooth/metabolism
4.
J Heart Lung Transplant ; 42(5): 544-552, 2023 05.
Article in English | MEDLINE | ID: mdl-36604291

ABSTRACT

Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-ß and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.


Subject(s)
Hypertension, Pulmonary , Humans , Vascular Endothelial Growth Factor A/metabolism , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Signal Transduction , Pulmonary Artery , Vascular Remodeling , Cell Proliferation , Myocytes, Smooth Muscle
5.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34990407

ABSTRACT

Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2 important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln-/- mutants. Eln-/- mice expressed higher levels of NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln-/- mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.


Subject(s)
Aortic Stenosis, Supravalvular , Elastin , Jagged-1 Protein/metabolism , Amyloid Precursor Protein Secretases , Animals , Aorta/metabolism , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/metabolism , Aortic Stenosis, Supravalvular/pathology , Constriction, Pathologic , Elastin/genetics , Elastin/metabolism , Endothelial Cells/metabolism , Humans , Mice , Receptor, Notch3/genetics
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911761

ABSTRACT

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Subject(s)
Hypertension, Pulmonary/pathology , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Transforming Growth Factor beta/metabolism , Vascular Remodeling/physiology , Animals , Gene Deletion , Gene Expression Regulation/drug effects , Genotype , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Humans , Hypertension, Pulmonary/metabolism , Ischemia , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 3/genetics , Mice , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Selective Estrogen Receptor Modulators/toxicity , Signal Transduction , Tamoxifen/toxicity , Transforming Growth Factor beta/genetics
7.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33591958

ABSTRACT

Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor-B (PDGF-B) induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH, and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA was upregulated in mice, and LysM­Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, hypoxia-inducible factor 2a, or Pdgfb had reduced macrophage Pdgfb and were protected against distal muscularization and PH. Conversely, LysM­Cre von-Hippel Lindaufl/fl mice had increased macrophage Hifa and Pdgfb and developed distal muscularization, PH, and RVH in normoxia. Similarly, Pdgfb was upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increased SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduced lung macrophage Pdgfb and prevented hypoxia-induced distal muscularization, PH, and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.


Subject(s)
Hypertension, Pulmonary/pathology , Macrophages/metabolism , Muscle, Smooth/physiopathology , Proto-Oncogene Proteins c-sis/physiology , Animals , Humans , Hypertension, Pulmonary/metabolism , Mice , Muscle, Smooth/pathology
8.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33393489

ABSTRACT

Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.


Subject(s)
Lung/innervation , Lung/metabolism , Macrophages/metabolism , Netrin-1/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bleomycin/adverse effects , Bleomycin/pharmacology , Female , Lung/pathology , Macrophages/pathology , Male , Mice , Mice, Transgenic , Netrin-1/genetics , Norepinephrine/genetics , Norepinephrine/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology
10.
Semin Perinatol ; 42(8): 487-500, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30482590

ABSTRACT

Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Research , Genetic Therapy/ethics , Genetic Therapy/methods , Bioethical Issues , Evidence-Based Medicine , Gene Editing/ethics , Gene Editing/trends , Genetic Research/ethics , Genetic Therapy/trends , Humans , Morals
11.
Respir Res ; 19(1): 148, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30081910

ABSTRACT

BACKGROUND: Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death. The pronounced morbidity and mortality associated with malformation or destruction of alveoli underscores a pressing need for new therapeutic concepts. The re-induction of alveolarization in diseased lungs is a new and exciting concept in a regenerative medicine approach to manage pulmonary diseases that are characterized by an absence of alveoli. MAIN TEXT: Mechanisms of alveolarization first need to be understood, to identify pathways and mediators that may be exploited to drive the induction of alveolarization in the diseased lung. With this in mind, a variety of candidate cell-types, pathways, and molecular mediators have recently been identified. Using lineage tracing approaches and lung injury models, new progenitor cells for epithelial and mesenchymal cell types - as well as cell lineages which are able to acquire stem cell properties - have been discovered. However, the underlying mechanisms that orchestrate the complex process of lung alveolar septation remain largely unknown. CONCLUSION: While important progress has been made, further characterization of the contributing cell-types, the cell type-specific molecular signatures, and the time-dependent chemical and mechanical processes in the developing, adult and diseased lung is needed in order to implement a regenerative therapeutic approach for pulmonary diseases.


Subject(s)
Lung Injury/physiopathology , Lung/physiology , Pulmonary Alveoli/physiology , Regeneration/physiology , Animals , Humans , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Pulmonary Alveoli/pathology
12.
Cell Rep ; 23(4): 1152-1165, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29694892

ABSTRACT

Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor ß+ (PDGFR-ß+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α (HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.


Subject(s)
Cell Transdifferentiation , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Myoblasts, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Female , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lymphokines/genetics , Lymphokines/metabolism , Male , Mice , Muscle, Smooth, Vascular/pathology , Myoblasts, Smooth Muscle/pathology , Myocytes, Smooth Muscle/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism
13.
Genesis ; 55(12)2017 12.
Article in English | MEDLINE | ID: mdl-29045046

ABSTRACT

Pulmonary diseases such as chronic obstructive pulmonary disease, lung fibrosis, and bronchopulmonary dysplasia are characterized by the destruction or malformation of the alveolar regions of the lung. The underlying pathomechanisms at play are an area of intense interest since these mechanisms may reveal pathways suitable for interventions to drive reparative processes. Lipid-laden fibroblasts (lipofibroblasts) express the Perilipin 2 (Plin2) gene-product, PLIN2, commonly called adipose-differentiation related protein (ADRP). These cells are also thought to play a role in alveolarization and repair after injury to the alveolus. Progress in defining the functional contribution of lipofibroblasts to alveolar generation and repair is hampered by a lack of in vivo tools. The present study reports the generation of an inducible mouse Cre-driver line to target cells of the ADRP lineage. Robust Cre-mediated recombination in this mouse line was detected in mesenchymal cells of the postnatal lung, and in additional organs including the heart, liver, and spleen. The generation and validation of this valuable new tool to genetically target, manipulate, and trace cells of the ADRP lineage is critical for assessing the functional contribution of lipofibroblasts to lung development and repair.


Subject(s)
Cell Differentiation/genetics , Integrases/genetics , Organogenesis/genetics , Perilipin-2/genetics , Animals , Epithelial Cells/metabolism , Fibroblasts/metabolism , Lung/growth & development , Lung/metabolism , Lung/pathology , Mice , Pulmonary Alveoli/growth & development , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology
15.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L882-L895, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28314804

ABSTRACT

Postnatal lung maturation generates a large number of small alveoli, with concomitant thinning of alveolar septal walls, generating a large gas exchange surface area but minimizing the distance traversed by the gases. This demand for a large and thin gas exchange surface area is not met in disorders of lung development, such as bronchopulmonary dysplasia (BPD) histopathologically characterized by fewer, larger alveoli and thickened alveolar septal walls. Diseases such as BPD are often modeled in the laboratory mouse to better understand disease pathogenesis or to develop new interventional approaches. To date, there have been no stereology-based longitudinal studies on postnatal mouse lung development that report dynamic changes in alveoli number or alveolar septal wall thickness during lung maturation. To this end, changes in lung structure were quantified over the first 22 mo of postnatal life of C57BL/6J mice. Alveolar density peaked at postnatal day (P)39 and remained unchanged at 9 mo (P274) but was reduced by 22 mo (P669). Alveoli continued to be generated, initially at an accelerated rate between P5 and P14, and at a slower rate thereafter. Between P274 and P669, loss of alveoli was noted, without any reduction in lung volume. A progressive thinning of the alveolar septal wall was noted between P5 and P28. Pronounced sex differences were observed in alveoli number in adult (but not juvenile) mice, when comparing male and female mouse lungs. This sex difference was attributed exclusively to the larger volume of male mouse lungs.


Subject(s)
Aging/physiology , Pulmonary Alveoli/growth & development , Animals , Animals, Newborn , Female , Male , Mice, Inbred C57BL , Models, Biological , Organ Size , Pulmonary Alveoli/anatomy & histology , Sex Characteristics
16.
Cell Stem Cell ; 20(2): 261-273.e3, 2017 02 02.
Article in English | MEDLINE | ID: mdl-27867035

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.


Subject(s)
Disease Progression , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/pathology , Lipogenesis , Muscle Development , Actins/metabolism , Animals , Fibroblast Growth Factor 10/metabolism , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , PPAR gamma/metabolism , Phenotype , Signal Transduction , Transforming Growth Factor beta1/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 309(9): L942-58, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26320158

ABSTRACT

A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cell populations during late lung development in mice. PDGFRα(+) cells (detected using a PDGFRα(GFP) reporter line) were noted around the proximal airways during the pseudoglandular stage. In the canalicular stage, PDGFRα(+) cells appeared in the more distal mesenchyme, and labeled α-smooth muscle actin-positive tip cells in the secondary crests and lipofibroblasts in the primary septa during alveolarization. Some PDGFRα(+) cells appeared in the mesenchyme of the adult lung. Over the course of late lung development, PDGFRα(+) cells consistently expressed collagen I, and transiently expressed markers of mesenchymal stem cells. With the use of both, a constitutive and a conditional PDGFRα(Cre) line, it was observed that PDGFRα(+) cells generated alveolar myofibroblasts including tip cells of the secondary crests, and lipofibroblasts. These lineages were committed before secondary septation. The present study provides new insights into the time-dependent commitment of the PDGFRα(+) cell lineage to lipofibroblasts and myofibroblasts during late lung development that is needed to better understand the cellular contribution to the process of alveolarization.


Subject(s)
Myofibroblasts/cytology , Myofibroblasts/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/embryology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Actins/genetics , Actins/metabolism , Animals , Cell Lineage , Collagen Type I/biosynthesis , Collagen Type I/genetics , Mesoderm/cytology , Mesoderm/embryology , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...