Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 19(1): 151, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33858454

ABSTRACT

BACKGROUND: Pharmacogenomics describes the link between gene variations (polymorphisms) and drug responses. In view of the implementation of precision medicine in personalized healthcare, pharmacogenetic tests have recently been introduced in the clinical practice. However, the translational aspects of such tests have been limited due to the lack of robust population-based evidence. MATERIALS: In this paper we present a novel pharmacogenetic panel (iDNA Genomics-PGx-CNS or PGx-CNS), consisting of 24 single nucleotide polymorphisms (SNPs) on 13 genes involved in the signaling or/and the metabolism of 28 approved drugs currently administered to treat diseases of the Central Nervous System (CNS). We have tested the PGx-CNS panel on 501 patient-derived DNA samples from a southeastern European population and applied biostatistical analyses on the pharmacogenetic associations involving drug selection, dosing and the risk of adverse drug events (ADEs). RESULTS: Results reveal the occurrences of each SNP in the sample and a strong correlation with the European population. Nonlinear principal component analysis strongly indicates co-occurrences of certain variants. The metabolization efficiency (poor, intermediate, extensive, ultra-rapid) and the frequency of clinical useful pharmacogenetic, associations in the population (drug relevance), are also described, along with four exemplar clinical cases illustrating the strong potential of the PGx-CNS panel, as a companion diagnostic assay. It is noted that pharmacogenetic associations involving copy number variations (CNVs) or the HLA gene were not included in this analysis. CONCLUSIONS: Overall, results illustrate that the PGx-CNS panel is a valuable tool supporting therapeutic medical decisions, urging its broad clinical implementation.


Subject(s)
Pharmaceutical Preparations , Pharmacogenetics , Central Nervous System , DNA Copy Number Variations/genetics , Humans , Precision Medicine
2.
Clin Epigenetics ; 9: 127, 2017.
Article in English | MEDLINE | ID: mdl-29255496

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. METHODS: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. RESULTS: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-ß signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. CONCLUSIONS: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.


Subject(s)
Down-Regulation , MicroRNAs/blood , Oligonucleotide Array Sequence Analysis/methods , Osteoarthritis/diagnosis , Aged , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Markers , Humans , Male , MicroRNAs/genetics , Middle Aged , Osteoarthritis/blood , Osteoarthritis/genetics , Sensitivity and Specificity
3.
Pharmacogenomics J ; 14(6): 523-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24889923

ABSTRACT

Psoriasis affects 2-3% of the population, causing significant morbidity and financial burden. Immunosuppressive drugs such as cyclosporine are first line systemic therapies for moderate-to-severe forms. However, patients exhibit heterogeneity in their response to therapy, possibly due to genetic factors. The aim of the present study was to assess the ABCB1 T-129C, G1199A, C1236T, G2677T and C3435T single-nucleotide polymorphisms (SNPs) as candidate predictive markers of response to cyclosporine treatment in 84 psoriasis patients. 62% of the patients were defined as responders and 38% as nonresponders. All SNPs complied with Hardy-Weinberg equilibrium. SNP and haplotype analyses were performed to access responsiveness to treatment. Association analysis revealed statistically significant association of SNP 3435 T with negative response (P=0.0075), a result that was further validated in haplotype analysis. This study is the first in the field of the pharmacogenetics of cyclosporine in psoriasis whose results merit further exploitation in larger independent cohorts.


Subject(s)
Cyclosporine/therapeutic use , Polymorphism, Single Nucleotide/genetics , Psoriasis/drug therapy , Psoriasis/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Female , Greece , Humans , Male , Psoriasis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...