Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8009): 894-900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600380

ABSTRACT

Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpinski triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.


Subject(s)
Citrate (si)-Synthase , Evolution, Molecular , Fractals , Protein Multimerization , Synechococcus , Cryoelectron Microscopy , Models, Molecular , Synechococcus/enzymology , Citrate (si)-Synthase/chemistry , Citrate (si)-Synthase/metabolism , Citrate (si)-Synthase/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...