Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764950

ABSTRACT

Alpha herpesviruses (α-HV) infect host mucosal epithelial cells prior to establishing a life-long latent infection in the peripheral nervous system. The initial spread of viral particles from mucosa to the nervous system and the role of intrinsic immune responses at this barrier is not well understood. Using primary neurons cultured in compartmentalized chambers, prior studies performed on Pseudorabies virus (PRV) have demonstrated that type I and type II interferons (IFNs) induce a local antiviral response in axons via distinct mechanisms leading to a reduction in viral particle transport to the neuronal nucleus. A new class of interferons known as type III IFNs has been shown to play an immediate role against viral infection in mucosal epithelial cells. However, the antiviral effects of type III IFNs within neurons during α-HV infection are largely unknown. In this study, we focused on elucidating the antiviral activity of type III IFN against PRV neuronal infection, and we compared the interferon-stimulated gene (ISGs) induction pattern in neurons to non-neuronal cells. We found that IFN pre-exposure of both primary neurons and fibroblast cells significantly reduces PRV virus yield, albeit by differential STAT activation and ISG induction patterns. Notably, we observed that type III IFNs trigger the expression of a subset of ISGs mainly through STAT1 activation to induce an antiviral state in primary peripheral neurons.

SELECTION OF CITATIONS
SEARCH DETAIL