Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1275136, 2023.
Article in English | MEDLINE | ID: mdl-38077315

ABSTRACT

Introduction: People living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers. Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study. Results: Single-cell RNA-seq analysis revealed that most immune cells in peripheral blood of PLHIV are altered in their transcriptomes and that a specific functional monocyte state previously described in acute HIV infection is still existing in PLHIV while other monocyte cell states are only occurring acute infection. Further, a reverse transcriptome approach on a rather small number of PLHIV was sufficient to identify drug candidates for reversing the transcriptional phenotype of monocytes in PLHIV. Discussion: These scientific findings and technological advancements for clinical application of single-cell transcriptomics form the basis for the larger 2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk and single-cell transcriptomics will be included as the leading technology to determine disease endotypes in PLHIV and to predict disease trajectories and outcomes.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Anti-HIV Agents/therapeutic use , Cohort Studies , Monocytes , Multicenter Studies as Topic
2.
Neurobiol Dis ; 186: 106274, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37648037

ABSTRACT

Elevated alpha-synuclein (SNCA) gene expression is associated with transcriptional deregulation and increased risk of Parkinson's disease, which may be partially ameliorated by environmental enrichment. At the molecular level, there is emerging evidence that excess alpha-synuclein protein (aSyn) impacts the epigenome through direct and/or indirect mechanisms. However, the extents to which the effects of both aSyn and the environment converge at the epigenome and whether epigenetic alterations underpin the preventive effects of environmental factors on transcription remain to be elucidated. Here, we profiled five DNA and histone modifications in the hippocampus of wild-type and transgenic mice overexpressing human SNCA. Mice of each genotype were housed under either standard conditions or in an enriched environment (EE) for 12 months. SNCA overexpression induced hippocampal CpG hydroxymethylation and histone H3K27 acetylation changes that associated with genotype more than environment. Excess aSyn was also associated with genotype- and environment-dependent changes in non-CpG (CpH) DNA methylation and H3K4 methylation. These H3K4 methylation changes included loci where the EE ameliorated the impacts of the transgene as well as loci resistant to the effects of environmental enrichment in transgenic mice. In addition, select H3K4 monomethylation alterations were associated with changes in mRNA expression. Our results suggested an environment-dependent impact of excess aSyn on some functionally relevant parts of the epigenome, and will ultimately enhance our understanding of the molecular etiology of Parkinson's disease and other synucleinopathies.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , Mice , alpha-Synuclein/genetics , Epigenome , Gene Expression , Hippocampus , Mice, Transgenic , Parkinson Disease/genetics
3.
Respir Res ; 24(1): 196, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37559053

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients can develop pulmonary fibrosis (PF), which is associated with impaired outcome. We assessed specific leukocytic transcriptome profiles associated with PF and the influence of early dexamethasone (DEXA) treatment on the clinical course of PF in critically ill COVID-19 patients. METHODS: We performed a pre-post design study in 191 COVID-19 patients admitted to the Intensive Care Unit (ICU) spanning two treatment cohorts: the pre-DEXA- (n = 67) and the DEXA-cohort (n = 124). PF was identified based on radiological findings, worsening of ventilatory parameters and elevated circulating PIIINP levels. Longitudinal transcriptome profiles of 52 pre-DEXA patients were determined using RNA sequencing. Effects of prednisone treatment on clinical fibrosis parameters and outcomes were analyzed between PF- and no-PF-patients within both cohorts. RESULTS: Transcriptome analyses revealed upregulation of inflammatory, coagulation and neutrophil extracellular trap-related pathways in PF-patients compared to no-PF patients. Key genes involved included PADI4, PDE4D, MMP8, CRISP3, and BCL2L15. Enrichment of several identified pathways was associated with impaired survival in a external cohort of patients with idiopathic pulmonary fibrosis. Following prednisone treatment, PF-related profiles reverted towards those observed in the no-PF-group. Likewise, PIIINP levels decreased significantly following prednisone treatment. PF incidence was 28% and 25% in the pre-DEXA- and DEXA-cohort, respectively (p = 0.61). ICU length-of-stay (pre-DEXA: 42 [29-49] vs. 18 [13-27] days, p < 0.001; DEXA: 42 [28-57] vs. 13 [7-24] days, p < 0.001) and mortality (pre-DEXA: 47% vs. 15%, p = 0.009; DEXA: 61% vs. 19%, p < 0.001) were higher in the PF-groups compared to the no-PF-groups within both cohorts. Early dexamethasone therapy did not influence these outcomes. CONCLUSIONS: ICU patients with COVID-19 who develop PF exhibit upregulated coagulation, inflammation, and neutrophil extracellular trap-related pathways as well as prolonged ICU length-of-stay and mortality. This study indicates that early dexamethasone treatment neither influences the incidence or clinical course of PF, nor clinical outcomes.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , SARS-CoV-2 , Prednisone , Respiration, Artificial , Dexamethasone , Disease Progression
4.
Cell Rep Med ; 3(6): 100652, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35675822

ABSTRACT

Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses. To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longitudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-recovery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we present strong indications for global regulatory changes in gene programs, decoupled from cell compositional changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing between interferon and NF-κB activity and restoration of cell homeostasis. Overall, we present a clinically relevant computational framework for modeling disease recovery, paving the way for future studies of the recovery dynamics in other diseases and tissues.


Subject(s)
COVID-19 , NF-kappa B , Cell Differentiation , Humans , Interferons/metabolism , NF-kappa B/genetics , Neutrophils/metabolism , Signal Transduction
5.
Nature ; 594(7862): 265-270, 2021 06.
Article in English | MEDLINE | ID: mdl-34040261

ABSTRACT

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Subject(s)
Blockchain , Clinical Decision-Making/methods , Confidentiality , Datasets as Topic , Machine Learning , Precision Medicine/methods , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks , Female , Humans , Leukemia/diagnosis , Leukemia/pathology , Leukocytes/pathology , Lung Diseases/diagnosis , Machine Learning/trends , Male , Software , Tuberculosis/diagnosis
7.
Genome Med ; 13(1): 7, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441124

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Subject(s)
COVID-19/pathology , Neutrophils/metabolism , Transcriptome , Antiviral Agents/therapeutic use , COVID-19/virology , Case-Control Studies , Down-Regulation , Drug Repositioning , Humans , Neutrophils/cytology , Neutrophils/immunology , Phenotype , Principal Component Analysis , RNA/blood , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Severity of Illness Index , Up-Regulation , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...