Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Circ Res ; 134(5): 482-501, 2024 03.
Article in English | MEDLINE | ID: mdl-38323474

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Subject(s)
Imidazoles , Induced Pluripotent Stem Cells , Mitochondrial Diseases , Pyridazines , Humans , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/pathology , Proteomics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/toxicity , Mitochondrial Diseases/pathology , Adenosine Triphosphate
2.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37267414

ABSTRACT

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Subject(s)
RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glycocalyx/metabolism , Endothelial Cells/metabolism , Sunitinib/toxicity , Sunitinib/metabolism
3.
Epigenomics ; 14(19): 1139-1155, 2022 10.
Article in English | MEDLINE | ID: mdl-36314267

ABSTRACT

Background: This study aimed to characterize the N6-methyladenosine epitranscriptomic profile induced by mono(2-ethylhexyl) phthalate (MEHP) exposure using a human-induced pluripotent stem cell-derived endothelial cell model. Methods: A multiomic approach was employed by performing RNA sequencing in parallel with an N6-methyladenosine-specific microarray to identify mRNAs, lncRNAs, and miRNAs affected by MEHP exposure. Results: An integrative multiomic analysis identified relevant biological features affected by MEHP, while functional assays provided a phenotypic characterization of these effects. Transcripts regulated by the epitranscriptome were validated with quantitative PCR and methylated RNA immunoprecipitation. Conclusion: The authors' profiling of the epitranscriptome expands the scope of toxicological insights into known environmental toxins to under surveyed cellular contexts and emerging domains of regulation and is, therefore, a valuable resource to human health.


Synthetic phthalates, such as mono(2-ethyhexyl) phthalate, have long been recognized as environmental toxins. What effect these compounds have on endothelial cells remains poorly understood. To address this, the authors utilized a human-induced pluripotent stem cell-derived endothelial cell model to screen for an environmental toxin. They then obtained a profile of the epitranscriptomic changes involving the N6-methyladensosine modification and performed biochemical and functional assays. Overall, this study demonstrated how stem cell-based approaches can be used for toxicological screening and provided a valuable resource that profiles the epitranscriptomic response, which was complemented with RNA sequencing and functional and biochemical assays. This study provides relevant toxicological insights into the context of human health.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Endothelial Cells
4.
Cell Biosci ; 12(1): 24, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246252

ABSTRACT

Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.

5.
Sci Rep ; 11(1): 5583, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692478

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the first time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 differentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, inflammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantification of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased attesting the dysregulation of oxidative stress response. In conclusion this is the first quantitative study to highlight the involvement of endothelial dysfunction in CTEPH using patient samples and by network medicine approach.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Protein Carbonylation , Protein Interaction Maps , Pulmonary Artery/metabolism , Pulmonary Embolism/metabolism , Thromboembolism/metabolism , Endothelial Cells/pathology , Humans , Hypertension, Pulmonary/pathology , Pulmonary Artery/pathology , Pulmonary Embolism/pathology , Thromboembolism/pathology
6.
Stem Cell Res Ther ; 11(1): 514, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256833

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic. The prevalence/severity of COVID-19 is higher among patients with cardiovascular risk factors. Despite the expression of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 infection, in cardiomyocytes, there has been no conclusive evidence of direct viral infection although the presence of viral genome within COVID-19 patients' hearts has been reported. Here, we overexpressed SARS-CoV-2 genes in A549 lung epithelial cells. We then isolated extracellular vesicles (EVs) and detected the presence of viral RNA within these EVs. We observed that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are receptive to these EVs, and viral genes were detectable in the cardiomyocytes. Accordingly, the uptake of viral RNA-harboring EVs led to an upregulation of inflammation-related genes in hiPSC-CMs. Thus, our findings indicate that SARS-CoV-2 RNA containing EVs represents an indirect route of viral RNA entry into cardiomyocytes.


Subject(s)
COVID-19/virology , Extracellular Vesicles/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Virus Internalization , A549 Cells , Humans , Induced Pluripotent Stem Cells , RNA, Viral
7.
bioRxiv ; 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32637965

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a worldwide pandemic. Early data suggest that the prevalence and severity of COVID-19 appear to be higher among patients with underlying cardiovascular risk factors. Despite the expression of angiotensin-converting enzyme 2 (ACE2), a functional receptor for SARS-CoV-2 infection, in cardiomyocytes, there has been no conclusive evidence of direct viral infection although the presence of inflammation and viral genome within the hearts of COVID-19 patients have been reported. Here we transduced A549 lung epithelial cells with lentivirus overexpressing selected genes of the SARS-CoV-2. We then isolated extracellular vesicles (EVs) from the supernatant of A549 cells and detected the presence of viral RNA within the purified EVs. Importantly, we observed that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were able to actively uptake these EVs and viral genes were subsequently detected in the cardiomyocytes. Accordingly, uptake of EVs containing viral genes led to an upregulation of inflammation-related genes in hiPSC-CMs. Thus, our findings indicate that SARS-CoV-2 RNA-containing EVs represent an indirect route of viral RNA entry into cardiomyocytes.

8.
J Pharm Biomed Anal ; 185: 113199, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32146287

ABSTRACT

Hyaluronic acid (HA) is physiologically synthesized by several human cells types but it is also a widespread ingredient of commercial products, from pharmaceuticals to cosmetics. Despite its extended use, the precise intra- and extra-cellular effects of HA at low-molecular-weight (LWM-HA) are currently unclear. At this regard, the aim of this study is to in-depth identify and quantify proteome's changes in normal human dermal fibroblasts after 24 h treatment with 0.125, 0.25 and 0.50 % LMW-HA (20-50 kDa) respectively, vs controls. To do this, a label-free quantitative proteomic approach based on high-resolution mass spectrometry was used. Overall, 2328 proteins were identified of which 39 significantly altered by 0.125 %, 149 by 0.25 % and 496 by 0.50 % LMW-HA. Protein networking studies indicated that the biological effects involve the enhancement of intracellular activity at all concentrations, as well as the extracellular matrix reorganization, proteoglycans and collagen biosynthesis. Moreover, the cell's wellness was confirmed, although mild inflammatory and immune responses were induced at the highest concentration. The more complete comprehension of intra- and extra-cellular effects of LMW-HA here provided by an advanced analytical approach and protein networking will be useful to further exploit its features and improve current formulations.


Subject(s)
Consumer Product Safety , Cosmetics/adverse effects , Fibroblasts/drug effects , Hyaluronic Acid/adverse effects , Proteomics/methods , Cell Line , Collagen/biosynthesis , Cosmetics/chemistry , Cosmetics/standards , Extracellular Matrix/drug effects , Feasibility Studies , Fibroblasts/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/standards , Mass Spectrometry/methods , Molecular Weight , Proteoglycans/biosynthesis , Skin/cytology
9.
Hypertension ; 74(4): 947-956, 2019 10.
Article in English | MEDLINE | ID: mdl-31446798

ABSTRACT

Endothelial dysfunction is one of the primary factors in the onset and progression of atherothrombosis resulting in acute myocardial infarction (AMI). However, the pathological and cellular mechanisms of endothelial dysfunction in AMI have not been systematically studied. Protein expression profiling in combination with a protein network analysis was used by the mass spectrometry-based label-free quantification approach. This identified and quantified 2246 proteins, of which 335 were differentially regulated in coronary arterial endothelial cells from patients with AMI compared with controls. The differentially regulated protein profiles reveal the alteration of (1) metabolism of RNA, (2) platelet activation, signaling, and aggregation, (3) neutrophil degranulation, (4) metabolism of amino acids and derivatives, (5) cellular responses to stress, and (6) response to elevated platelet cytosolic Ca2+ pathways. Increased production of oxidants and decreased production of antioxidant biomarkers as well as downregulation of proteins with antioxidant properties suggests a role for oxidative stress in mediating endothelial dysfunction during AMI. In conclusion, this is the first quantitative proteomics study to evaluate the cellular mechanisms of endothelial dysfunction in patients with AMI. A better understanding of the endothelial proteome and pathophysiology of AMI may lead to the identification of new drug targets.


Subject(s)
Coronary Artery Disease/metabolism , Endothelial Cells/metabolism , Myocardial Infarction/metabolism , Proteome , Humans , Mass Spectrometry , Proteomics/methods
10.
ACS Med Chem Lett ; 10(4): 577-583, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30996799

ABSTRACT

Human endothelial cells (ECs) have been employed to monitor the protein changes induced by [3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one] (3PO), a compound able to inhibit the glycolytic flux partially and transiently and to reduce pathological angiogenesis in a variety of disease models. Normal and TNFα induced inflamed ECs were incubated with and without 3PO at a concentration (20 µM) able to inhibit cell proliferation without cell death. At the end of the incubation period, samples were submitted to the following steps: (a) whole protein extraction, reduction, alkylation, and digestion by trypsin; (b) peptide separation by nano-LC-MS/MS analysis using a high-resolution mass spectrometer; (c) data analysis including protein identification, quantification, and statistical analysis. An altered protein expression profiling in combination with protein network analysis was employed by using a mass spectrometry-based label-free quantification approach to explore the underlying mechanisms of 3PO at cellular level.

SELECTION OF CITATIONS
SEARCH DETAIL