Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 13(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372145

ABSTRACT

In this research, the effect of processing input parameters on the kerf taper angle response of three various material thicknesses of sugar palm fiber reinforced unsaturated polyester composite was investigated as an output parameter from abrasive waterjet and laser beam cutting techniques. The main purpose of the study is to obtain data that includes the optimum input parameters in cutting the composite utilizing these two unconventional techniques to avoid some defects that arise when using traditional cutting methods for cutting the composites, and then make a comparison to determine which is the most appropriate technique regarding the kerf taper angle response that is desired to be reduced. In the laser beam cutting process, traverse speed, laser power, and assist gas pressure were selected as the variable input parameters to optimize the kerf taper angle. While the water pressure, traverse speed, and stand-off-distance were the input variable parameters in the case of waterjet cutting process, with fixing of all the other input parameters in both cutting techniques. The levels of the input parameters that provide the optimal response of the kerf taper angle were determined using Taguchi's approach, and the significance of input parameters was determined by computing the max-min variance of the average of the signal to-noise ratio (S/N) for each parameter. The contribution of each input processing parameter to the effects on kerf taper angle was determined using analysis of variation (ANOVA). Compared with the results that were extrapolated in the previous studies, both processes achieved acceptable results in terms of the response of the kerf taper angle, noting that the average values produced from the laser cutting process are much lower than those resulting from the waterjet cutting process, which gives an advantage to the laser cutting technique.

2.
Polymers (Basel) ; 13(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652612

ABSTRACT

In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi's method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter's contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.

3.
Polymers (Basel) ; 12(6)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545334

ABSTRACT

Recently, natural fiber-reinforced polymers (NFRPs) have become important materials in many engineering applications; thus, to employ these materials some final industrial processes are needed, such as cutting, trimming, and drilling. Because of the heterogeneous nature of NFRPs, which differs from homogeneous materials such as metals and polymers, several defects have emerged when processing the NFRPs through traditional cutting methods such as high surface roughness and material damage at cutting zone. In order to overcome these challenges, unconventional cutting methods were considered. Unconventional cutting methods did not take into account the effects of cutting forces, which are the main cause of cutting defects in traditional cutting processes. The most prominent unconventional cutting processes are abrasive waterjet (AWJM) and laser beam (LBM) cutting technologies, which are actually applied for cutting various NFRPs. In this study, previously significant studies on cutting NFRPs by AWJM and LBM are discussed. The surface roughness, kerf taper, and heat-affected zone (HAZ) represent the target output parameters that are influenced and controlled by the input parameters of each process. However, this topic requires further studies on widening the range of material thickness and input parameter values.

4.
Appl Bionics Biomech ; 2017: 7595642, 2017.
Article in English | MEDLINE | ID: mdl-28584518

ABSTRACT

A gear-based knee joint is designed to improve the performance of mechanical-type above-knee prostheses. The gear set with the help of some bracing, and bracket arrangement, is used to enable the prosthesis to follow the residual limb movement. The motion analysis and finite-element analysis (FEA) of knee joint components are carried out to assess the feasibility of the design. The maximum stress of 29.74 MPa and maximum strain of 2.393e-004 are obtained in the gear, whereas the maximum displacement of 7.975 mm occurred in the stopper of the knee arrangement. The factor of safety of 3.5 obtained from the FE analysis indicated no possibility of design failure. The results obtained from the FE analysis are then compared with the real data obtained from the literature for a similar subject. The pattern of motion analysis results has shown a great resemblance with the gait cycle of a healthy biological limb.

SELECTION OF CITATIONS
SEARCH DETAIL