Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 298(6): 1365-1375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37632570

ABSTRACT

The Japanese apricot (Prunus mume) is a popular fruit tree in Japan. However, the genetic factors associated with fruit trait variations are poorly understood. In this study, we investigated nine fruit-associated traits, including harvesting time, fruit diameter, fruit shape, fruit weight, stone (endocarp) weight, ratio of stone weight to fruit weight, and rate of fruit gumming, using 110 Japanese apricot accessions over four years. A genome-wide association study (GWAS) was performed for these traits and strong signals were detected on chromosome 6 for harvesting time and fruit diameters. These peaks were shown to undergo strong artificial selection during the differentiation of small-fruit cultivars. The genomic region defined by the GWAS and XP-nSL analyses harbored several candidate genes associated with plant hormone regulation. Furthermore, the alleles of small-fruit cultivars in this region were shown to have genetic proximity to some Chinese cultivars of P. mume. These results indicate that the small-fruit trait originated in China; after being introduced into Japan, it was preferred and selected by the Japanese people, resulting in the differentiation of small-fruit cultivars.


Subject(s)
Prunus armeniaca , Prunus , Humans , Prunus armeniaca/genetics , Prunus/genetics , Fruit/genetics , Genome-Wide Association Study , Genomics
3.
Mol Genet Genomics ; 298(4): 943-953, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37195447

ABSTRACT

Asian rice (Oryza sativa) was domesticated from O. rufipogon, and reduced seed-shattering behaviour was selected to increase yields. Two seed-shattering loci, qSH3 and sh4, are involved in reducing seed shattering in both japonica and indica rice cultivars, while qSH1 and qCSS3 are likely specific to japonica cultivars. In indica cultivars, qSH3 and sh4 fail to explain the degree of seed shattering, as an introgression line (IL) of O. rufipogon W630 carrying domesticated alleles at qSH3 and sh4 still showed seed shattering. Here we analysed differences in seed-shattering degree between the IL and the indica cultivar IR36. The values for grain detachment in the segregating population between the IL and IR36 were continuous. Based on QTL-seq analysis using the BC1F2 population between the IL and IR36, we detected two novel loci, qCSS2 and qCSS7 (QTLs for the Control of Seed Shattering in rice on chromosomes 2 and 7), which contributed to the reduced seed shattering in IR36. We further investigated the genetic interaction of qCSS2 and qCSS7 under the presence of qSH3 and sh4 mutations in O. rufipogon W630 and found that IL carrying IR36 chromosomal segments covering all four loci are required to explain seed-shattering degree in IR36. Since qCSS2 and qCSS7 were not detected in previous studies on seed shattering in japonica, their control may be specific to indica cultivars. Therefore, they are important to understanding the history of rice domestication as well as to adjusting the seed-shattering degree of indica cultivars to maximise their yield.


Subject(s)
Oryza , Oryza/genetics , Quantitative Trait Loci/genetics , Mutation , Domestication , Seeds/genetics
4.
Proc Natl Acad Sci U S A ; 119(26): e2121692119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733263

ABSTRACT

Asian rice (Oryza sativa L.) is consumed by more than half of the world's population. Despite its global importance, the process of early rice domestication remains unclear. During domestication, wild rice (Oryza rufipogon Griff.) acquired non-seed-shattering behavior, allowing humans to increase grain yield. Previous studies argued that a reduction in seed shattering triggered by the sh4 mutation led to increased yield during rice domestication, but our experiments using wild introgression lines show that the domesticated sh4 allele alone is insufficient for shattering loss in O. rufipogon. The interruption of abscission layer formation requires both sh4 and qSH3 mutations, demonstrating that the selection of shattering loss in wild rice was not as simple as previously suggested. Here we identified a causal single-nucleotide polymorphism at qSH3 within the seed-shattering gene OsSh1, which is conserved in indica and japonica subspecies but absent in the circum-aus group of rice. Through harvest experiments, we further demonstrated that seed shattering alone did not significantly impact yield; rather, yield increases were observed with closed panicle formation controlled by SPR3 and further augmented by nonshattering, conferred by integration of sh4 and qSH3 alleles. Complementary manipulation of panicle shape and seed shattering results in a mechanically stable panicle structure. We propose a stepwise route for the earliest phase of rice domestication, wherein selection of visible SPR3-controlled closed panicle morphology was instrumental in the sequential recruitment of sh4 and qSH3, which together led to the loss of shattering.


Subject(s)
Domestication , Genes, Plant , Oryza , Seed Dispersal , Seeds , Alleles , Humans , Mutation , Oryza/genetics , Oryza/physiology , Phenotype , Polymorphism, Single Nucleotide , Seed Dispersal/genetics , Seeds/genetics , Seeds/physiology
5.
Plant Reprod ; 34(3): 255-266, 2021 09.
Article in English | MEDLINE | ID: mdl-34165636

ABSTRACT

KEY MESSAGE: Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.


Subject(s)
Prunus , Rosaceae , Gene Expression Regulation, Plant , Ovule/genetics , Prunus/genetics , Seeds/genetics , Transcriptome
6.
Plant J ; 104(6): 1551-1567, 2020 12.
Article in English | MEDLINE | ID: mdl-33048374

ABSTRACT

Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.


Subject(s)
Evolution, Molecular , Genetic Introgression/genetics , Prunus/genetics , Selection, Genetic/genetics , Domestication , Genome, Plant/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Prunus armeniaca/genetics , Prunus domestica/genetics , Prunus persica/genetics , Sequence Analysis, DNA
7.
Theor Appl Genet ; 132(9): 2615-2623, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31222437

ABSTRACT

KEY MESSAGE: A novel locus, qCSS3, involved in the non-seed-shattering behaviour of Japonica rice cultivar, 'Nipponbare', was detected by QTL-seq analysis using the segregating population with the fixed known seed-shattering loci. Asian cultivated rice, Oryzasativa, was domesticated from its wild ancestor, O.rufipogon. Loss of seed shattering is one of the most recognisable traits selected during rice domestication. Three quantitative trait loci (QTLs), qSH1, qSH3, and sh4, were previously reported to be involved in the loss of seed shattering of Japonica cultivated rice, O.sativa 'Nipponbare'. However, the introgression line (IL) carrying 'Nipponbare' alleles at these three loci in the genetic background of wild rice, O.rufipogon W630, showed a lower value for detaching a grain from the pedicel than 'Nipponbare'. Here, we investigated abscission layer formation in the IL and found a partially formed abscission layer in the central region between the epidermis and vascular bundles. Based on QTL-seq analysis using the F2 population obtained from a cross between 'Nipponbare' and the IL, we detected two novel loci qCSS3 and qCSS9 (QTL for the Control of Seed Shattering in rice on chromosomes 3 and 9), which were found to be involved in the difference in seed-shattering degree between 'Nipponbare' and W630. Then, we further focused on qCSS3 in order to understand its potential role on the loss of seed shattering. The candidate region of qCSS3 was found to be located within a 526-kb region using substitution mapping analysis. Interestingly, the qCSS3 candidate region partially overlaps the selective sweep detected for Japonica but not for Indica rice cultivars, suggesting that this region harbours the mutation at a novel seed-shattering locus specifically selected for non-seed-shattering behaviour in Japonica cultivars.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Oryza/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics , Genotype , Oryza/growth & development , Phenotype , Seeds/growth & development
8.
Nat Genet ; 45(4): 462-5, 465e1-2, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23435087

ABSTRACT

Reduction in seed shattering was an important phenotypic change during cereal domestication. Here we show that a simple morphological change in rice panicle shape, controlled by the SPR3 locus, has a large impact on seed-shedding and pollinating behaviors. In the wild genetic background of rice, we found that plants with a cultivated-like type of closed panicle had significantly reduced seed shedding through seed retention. In addition, the long awns in closed panicles disturbed the free exposure of anthers and stigmas on the flowering spikelets, resulting in a significant reduction of the outcrossing rate. We localized the SPR3 locus to a 9.3-kb genomic region, and our complementation tests suggest that this region regulates the liguleless gene (OsLG1). Sequencing analysis identified reduced nucleotide diversity and a selective sweep at the SPR3 locus in cultivated rice. Our results suggest that a closed panicle was a selected trait during rice domestication.


Subject(s)
Agriculture , Genes, Plant , Genome, Plant , Oryza/genetics , Quantitative Trait Loci , Seeds/genetics , Chromosomes, Plant , High-Throughput Nucleotide Sequencing , Oryza/growth & development , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...