Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 146: 170673, 2021 12.
Article in English | MEDLINE | ID: mdl-34627956

ABSTRACT

AIMS: This study investigated the nutrient-mediated modulation of total ghrelin (TG) and acyl ghrelin (AG) secretion from the mouse gastric mucosa, and the role of long-chain fatty acid chemosensors, FFAR4 and CD36, in lipid-mediated modulation of TG and AG release. METHODS: Ex-vivo experiments were conducted using mouse gastric mucosa to examine the effects of nutrients (D-glucose, L-phenylalanine, peptone (mixture of oligopeptides & single amino acids), D-mannitol, α-linolenic acid and fat emulsion (intralipid)) on TG and AG secretion. Additionally, inhibition of FFAR4 and CD36 on α-linolenic acid and intralipid-mediated regulation of TG and AG secretion was assessed. RESULTS: TG and AG secretion were unaffected by glucose and D-mannitol. Peptone stimulated the release of TG and AG. In contrast, L-phenylalanine reduced AG secretion only. Intralipid reduced TG secretion and stimulated AG secretion, and α-linolenic acid reduced AG release, without affecting TG mobilisation. Modulation of ghrelin secretion by lipids occurred in an FFAR4 and CD36-independent manner. CONCLUSION: Ghrelin secretion is modulated in a nutrient-specific manner by proteins and lipids, with TG and AG displaying independent responses to the same stimuli. In addition, FFAR4 and CD36 do not participate in modulation of TG and AG secretion by α-linolenic acid and intralipid.


Subject(s)
CD36 Antigens/metabolism , Gastric Mucosa/metabolism , Ghrelin/analogs & derivatives , Lipids/analysis , Receptors, G-Protein-Coupled/metabolism , Animals , Ghrelin/blood , Ghrelin/metabolism , Male , Mice , Mice, Inbred C57BL
2.
Acta Physiol (Oxf) ; 231(3): e13588, 2021 03.
Article in English | MEDLINE | ID: mdl-33249751

ABSTRACT

Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.


Subject(s)
Diabetes Mellitus, Type 2 , Prader-Willi Syndrome , Eating , Ghrelin , Humans , Obesity , Postprandial Period
3.
Nutrients ; 12(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824949

ABSTRACT

The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.


Subject(s)
Diet, High-Fat/adverse effects , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Gene Expression , Ghrelin/genetics , Ghrelin/metabolism , Obesity/etiology , Obesity/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Animals , CD36 Antigens/genetics , CD36 Antigens/metabolism , Male , Mice, Inbred C57BL , Obesity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
4.
Neurogastroenterol Motil ; 32(12): e13944, 2020 12.
Article in English | MEDLINE | ID: mdl-32666613

ABSTRACT

BACKGROUND: The ability of the gut to detect nutrients is critical to the regulation of gut hormone secretion, food intake, and postprandial blood glucose control. Ingested nutrients are detected by specific gut chemosensors. However, knowledge of these chemosensors has primarily been derived from the intestine, while available information on gastric chemosensors is limited. This study aimed to investigate the nutrient-sensing repertoire of the mouse stomach with particular emphasis on ghrelin cells. METHODS: Quantitative RT-PCR was used to determine mRNA levels of nutrient chemosensors (protein: G protein-coupled receptor 93 [GPR93], calcium-sensing receptor [CaSR], metabotropic glutamate receptor type 4 [mGluR4]; fatty acids: CD36, FFAR2&4; sweet/umami taste: T1R3), taste transduction components (TRPM5, GNAT2&3), and ghrelin and ghrelin-processing enzymes (PC1/3, ghrelin O-acyltransferase [GOAT]) in the gastric corpus and antrum of adult male C57BL/6 mice. Immunohistochemistry was performed to assess protein expression of chemosensors (GPR93, T1R3, CD36, and FFAR4) and their co-localization with ghrelin. KEY RESULTS: Most nutrient chemosensors had higher mRNA levels in the antrum compared to the corpus, except for CD36, GNAT2, ghrelin, and GOAT. Similar regional distribution was observed at the protein level. At least 60% of ghrelin-positive cells expressed T1R3 and FFAR4, and over 80% expressed GPR93 and CD36. CONCLUSIONS AND INFERENCES: The cellular mechanisms for the detection of nutrients are expressed in a region-specific manner in the mouse stomach and gastric ghrelin cells. These gastric nutrient chemosensors may play a role modulating gastrointestinal responses, such as the inhibition of ghrelin secretion following food intake.


Subject(s)
Chemoreceptor Cells/metabolism , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Ghrelin/metabolism , Nutrients/metabolism , Animals , Chemoreceptor Cells/chemistry , Gastric Mucosa/chemistry , Ghrelin/genetics , Male , Mice , Mice, Inbred C57BL , Nutrients/genetics , Pyloric Antrum/chemistry , Pyloric Antrum/cytology , Pyloric Antrum/metabolism , Stomach/chemistry , Stomach/cytology
5.
J Physiol ; 598(11): 2169-2182, 2020 06.
Article in English | MEDLINE | ID: mdl-32237243

ABSTRACT

SIGNIFICANCE STATEMENT: Gastric vagal afferent responses to tension are dampened in high fat diet-induced obesity. Endocannabinoids are known to dose-dependently inhibit and excite gastric vagal afferents but their effect on gastric vagal afferents in diet-induced obesity are unknown. In individual gastric vagal afferent neurons of diet-induced obese mice the co-expression of components of the endocannabinoid system, including CB1, GHSR, TRPV1 and FAAH, was increased compared with lean mice. In high fat diet-induced obese mice, methanandamide only inhibited gastric vagal afferent responses to tension, possibly due to the observed change in the balance of receptors, hormones and breakdown enzymes in this system. Collectively, these data suggest that endocannabinoid signalling, by gastric vagal afferents, is altered in diet-induced obesity which may impact satiety and gastrointestinal function. ABSTRACT: Gastric vagal afferents (GVAs) play a role in appetite regulation. The endocannabinoid anandamide (AEA) dose-dependently inhibits and excites tension-sensitive GVAs. However, it is also known that high fat diet (HFD) feeding alters GVA responses to stretch. The aim of this study was to determine the role of AEA in GVA signalling in lean and HFD-induced obese mice. Male C57BL/6 mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Protein and mRNA expression of components of the cannabinoid system was determined in individual GVA cell bodies and the gastric mucosa. An in vitro GVA preparation was used to assess the effect of methanandamide (mAEA) on tension-sensitive GVAs and the second messenger pathways involved. In individual GVA cell bodies, cannabinoid 1 (CB1) and ghrelin (GHSR) receptor mRNA was higher in HFD mice than SLD mice. Conversely, gastric mucosal AEA and ghrelin protein levels were lower in HFD mice than SLD mice. In SLD mice, mAEA exerted dose-dependent inhibitory and excitatory effects on tension-sensitive GVAs. Only an inhibitory effect of mAEA was observed in HFD mice. The excitatory effect of mAEA was dependent on CB1, transient receptor potential vanilloid 1 (TRPV1) and the protein kinase C. Conversely, the inhibitory effect was dependent on CB1, growth hormone secretagogue receptor, TRPV1 and the protein kinase A. Endocannabinoids, acting through CB1 and TRPV1, have a pivotal role in modulating GVA satiety signals depending on the second messenger pathway utilised. In HFD mice only an inhibitory effect was observed. These changes may contribute to the development and/or maintenance of obesity.


Subject(s)
Nutritional Status , Vagus Nerve , Animals , Arachidonic Acids , Endocannabinoids , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/genetics , Stomach
6.
J Endocrinol ; 245(2): 327-342, 2020 05.
Article in English | MEDLINE | ID: mdl-32176867

ABSTRACT

Circulating growth hormone (GH) concentrations increase during pregnancy in mice and remain pituitary-derived. Whether abundance or activation of the GH secretagogue ghrelin increase during pregnancy, or in response to dietary octanoic acid supplementation, is unclear. We therefore measured circulating GH profiles in late pregnant C57BL/6J mice and in aged-matched non-pregnant females fed with standard laboratory chow supplemented with 5% octanoic or palmitic (control) acid (n = 4-13/group). Serum total and acyl-ghrelin concentrations, stomach and placenta ghrelin mRNA and protein expression, Pcsk1 (encoding prohormone convertase 1/3) and Mboat4 (membrane bound O-acyl transferase 4) mRNA were determined at zeitgeber (ZT) 13 and ZT23. Total and basal GH secretion were higher in late pregnant than non-pregnant mice (P < 0.001), regardless of diet. At ZT13, serum concentrations of total ghrelin (P = 0.004), but not acyl-ghrelin, and the density of ghrelin-positive cells in the gastric antrum (P = 0.019) were higher, and gastric Mboat4 and Pcsk1 mRNA expression were lower in pregnant than non-pregnant mice at ZT23. In the placenta, ghrelin protein was localised mostly to labyrinthine trophoblast cells. Serum acyl-, but not total, ghrelin was lower at mid-pregnancy than in non-pregnant mice, but not different at early or late pregnancy. In conclusion, dietary supplementation with 5% octanoic acid did not increase activation of ghrelin in female mice. Our results further suggest that increases in maternal GH secretion throughout murine pregnancy are not due to circulating acyl-ghrelin acting at the pituitary. Nevertheless, time-dependent increased circulating total ghrelin could potentially increase ghrelin action in tissues that express the acylating enzyme and receptor.


Subject(s)
Caprylates/pharmacology , Dietary Supplements , Ghrelin/drug effects , Growth Hormone/drug effects , Acylation , Animals , Female , Gastric Mucosa/metabolism , Mice , Mice, Inbred C57BL , Placenta/metabolism , Pregnancy , RNA, Messenger/metabolism
7.
Neurogastroenterol Motil ; 31(12): e13669, 2019 12.
Article in English | MEDLINE | ID: mdl-31241809

ABSTRACT

BACKGROUND: Stress exposure is known to trigger and exacerbate functional dyspepsia (FD) symptoms. Increased gastric sensitivity to food-related stimuli is widely observed in FD patients and is associated with stress and psychological disorders. The mechanisms underlying the hypersensitivity are not clear. Gastric vagal afferents (GVAs) play an important role in sensing meal-related mechanical stimulation to modulate gastrointestinal function and food intake. This study aimed to determine whether GVAs display hypersensitivity after chronic stress, and whether its interaction with leptin was altered by stress. METHODS: Eight-week-old male C57BL/6 mice were exposed to unpredictable chronic mild stress or no stress (control) for 8 weeks. The metabolic rate, gastric emptying rate, and anxiety- and depression-like behaviors were determined. GVA mechanosensitivity, and its modulation by leptin, was determined using an in vitro single fiber recording technique. QRT-PCR was used to establish the levels of leptin and leptin receptor mRNA in the stomach and nodose ganglion, respectively. KEY RESULTS: The stressed mice had lower body weight and food intake, and increased anxiety-like behavior compared to the control mice. The mechanosensitivity of mucosal and tension-sensitive GVAs was higher in the stressed mice. Leptin potentiated mucosal GVA mechanosensitivity in control but not stressed mice. The expression of leptin mRNA in the gastric mucosa was lower in the stressed mice. CONCLUSIONS AND INFERENCES: In conclusion, chronic stress enhances GVA mechanosensitivity, which may contribute to the gastric hypersensitivity in FD. In addition, the modulatory effect of leptin on GVA signaling is lost after chronic stress exposure.


Subject(s)
Stress, Psychological/physiopathology , Vagus Nerve/physiopathology , Afferent Pathways/physiology , Animals , Anxiety/etiology , Blood Glucose/analysis , Chronic Disease , Corticosterone/blood , Depression/etiology , Exploratory Behavior , Feeding Behavior , Gastric Emptying , Humans , Leptin/metabolism , Male , Maze Learning , Mechanoreceptors/physiology , Mice , Mice, Inbred C57BL , Noxae , Sucrose , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...