Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Biomimetics (Basel) ; 8(7)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37999155

ABSTRACT

Assessing the biocompatibility of endodontic root-end filling materials through cell line responses is both essential and of utmost importance. This study aimed to the cytotoxicity of the type of cell death through apoptosis and autophagy, and odontoblast cell-like differentiation effects of MTA, zinc oxide-eugenol, and two experimental Portland cements modified with bismuth (Portland Bi) and barium (Portland Ba) on primary cell cultures. Material and methods: The cells corresponded to human periodontal ligament and gingival fibroblasts (HPLF, HGF), human pulp cells (HPC), and human squamous carcinoma cells from three different patients (HSC-2, -3, -4). The cements were inoculcated in different concentrations for cytotoxicity evaluation, DNA fragmentation in electrophoresis, apoptosis caspase activation, and autophagy antigen reaction, odontoblast-like cells were differentiated and tested for mineral deposition. The data were subject to a non-parametric test. Results: All cements caused a dose-dependent reduction in cell viability. Contact with zinc oxide-eugenol induced neither DNA fragmentation nor apoptotic caspase-3 activation and autophagy inhibitors (3-methyladenine, bafilomycin). Portland Bi accelerated significantly (p < 0.05) the differentiation of odontoblast-like cells. Within the limitation of this study, it was concluded that Portland cement with bismuth exhibits cytocompatibility and promotes odontoblast-like cell differentiation. This research contributes valuable insights into biocompatibility, suggesting its potential use in endodontic repair and biomimetic remineralization.

2.
Cureus ; 15(9): e45299, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37846271

ABSTRACT

The present report describes a technique in which the maxillary bone was molded to the desired location using a series of instruments for ridge-splitting procedures. This technique aims to improve bone quality all around the implants at both the crest and apex locations. In some clinical scenarios, insufficient horizontal bone with less than 3 mm prevents implant placement. Thus, ridge splitting is a treatment of choice, and this technique creates bone expansion to form a better receptor site for endosteal implants. A case report is presented involving a completely edentulous 52-year-old male patient presented to the clinic with a horizontal bone defect. The patient complained of having difficulty eating and wants to improve his smile. In this clinical case, a modified ridge-splitting technique was employed, differing from the conventional procedure that uses mallets, chisels, or osteotomes. A lancet and spatula were used for precise ridge splitting, followed by the placement of four endosseous tapered implants-two on each side (Dentis USA, La Palma, USA). Each implant had a diameter of 3.7 mm and a length of 10 mm. These implants were clinically placed in a single visit, with a torque of 30 N/cm² applied to ensure secure fixation. To accommodate the patient's unique maxillary bone anatomy, 25-degree angulated abutments were chosen for the four implants, ensuring a common path of insertion, and optimal angulation for long-term stability and aesthetics. Subsequently, a cemented provisional dental prosthesis restoration was fitted, and the patient reported satisfaction with both function and aesthetics. After a period of five months of osseointegration, the stability of the implants was assessed using a resonance frequency analyzer, yielding positive results. The average resonance frequency values for the maxillary left (canine and premolar) were ISQ 68 and ISQ 71, respectively, while for the maxillary right (lateral incisor and premolar), the values were ISQ 69 and ISQ 73. These readings indicate satisfactory implant stability following the osseointegration process. The postoperative cone-beam computed tomography (CBCT) showed gain to the bone width besides better function and good results concerning the esthetics. This report describes a modified ridge-splitting technique with a predictable and satisfactory outcome that fulfilled the patient's demands. The presented approach overcomes the disadvantages of two-staged implant placement bone grafting procedures and is also a more affordable option for the patient. CBCT evaluation confirmed bone gain with minimal morbidity after the procedure.

3.
Medicina (Kaunas) ; 59(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37241054

ABSTRACT

An esthetically pleasing smile is a valuable aspect of physical appearance and plays a significant role in social interaction. Achieving the perfect balance between extraoral and intraoral tissues is essential for a harmonious and attractive smile. However, certain intraoral deficiencies, such as non-carious cervical lesions and gingival recession, can severely compromise the overall aesthetics, particularly in the anterior zone. Addressing such conditions requires careful planning and meticulous execution of both surgical and restorative procedures. This interdisciplinary clinical report presents a complex case of a patient with esthetic complaints related to asymmetric anterior gingival architecture and severely discolored and eroded maxillary anterior teeth. The patient was treated using a combination of minimally invasive ceramic veneers and plastic mucogingival surgery, resulting in a successful outcome. The report emphasizes the potential of this approach in achieving optimal esthetic results in challenging cases, highlighting the importance of an interdisciplinary team approach in achieving a harmonious balance between dental and soft tissue aesthetics.


Subject(s)
Gingival Recession , Transplants , Humans , Esthetics, Dental , Gingiva , Gingival Recession/surgery , Smiling
4.
Dent Mater J ; 42(4): 575-580, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37225497

ABSTRACT

The aim of this study is to evaluate the effect of over-the-counter (OTC) at-home whitening products with LED light on partially- and fully-crystalized CAD/CAM lithium disilicate ceramics. Two partially-crystalized CAD/CAM lithium disilicate ceramics, Amber Mill and IPS e.max CAD, and one fully-crystalized CAD/CAM lithium disilicate ceramic, n!ce Straumann, were used. The specimens were divided based on treatment with OTC whitening products: no treatment provided, Colgate Optic, Crest 3D and Walgreens Deluxe. The surface roughness of the specimens was evaluated with an optical profilometer and scanning electron microscopy. The three LED whitening products significantly increased the surface roughness and changed surface morphology of Amber Mill and IPS e.max CAD but no differences for n!ce Straumann. OTC at-home whitening products with LED light can significantly increase the surface roughness of restorations fabricated with these partially-crystalized CAD/CAM lithium disilicate ceramic restorations. However, these products do not increase the surface roughness of restorations fabricated with this fully-crystalized lithium disilicate ceramic.


Subject(s)
Amber , Dental Porcelain , Surface Properties , Ceramics , Computer-Aided Design , Materials Testing
5.
Healthcare (Basel) ; 11(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107896

ABSTRACT

Dental implants are a reliable alternative to treating edentulism. In clinical situations where the dentition has been severely affected by partial edentulism, advanced wear, or periodontal disease, establishing important occlusal elements such as the occlusal plane, incisal guidance, and esthetics can be hard to visualize at the diagnostic stage. Contemporary data-acquisition technologies such as 3D scanners and CAD/CAM systems permit the precise manufacture of highly complex devices applicable to any stage of restorative treatment. The present clinical report presents an alternative technique for evaluating the projected artificial tooth relationships, vertical dimension, and occlusal plane in patients with severely weakened dentition by using a 3D-printed overlay template.

6.
Biomimetics (Basel) ; 8(1)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36810406

ABSTRACT

The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE: To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS: hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS: The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION: (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.

7.
Biomimetics (Basel) ; 7(4)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36546911

ABSTRACT

Recently, biomimetic bioactive biomaterials have been introduced to the market for dental pulp capping. This systematic review and meta-analysis aimed to determine any variation between the effect of using TheraCal LC and other bioactive biomaterials for pulp capping is different, as measured by dentin increment and clinical success. The risk of bias was assessed using the Risk of Bias 2 and Newcastle−Ottawa tools for randomized clinical trials and observational studies. A search for relevant articles was performed on five databases. Additionally, the quality of the included studies was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. A summary of individual studies and a meta-analysis were performed. The odds ratio of data from clinical success was combined using a random-effects meta-analysis. The meta-analysis results showed homogeneity between the studies (I2 = 0%). They revealed that the clinical success showed no differences between the patients who received TheraCal LC, light-cured calcium silicate-based biomimetic biomaterial, for dental pulp capping or the comparator biomaterials (p > 0.5). However, the certainty of the evidence was low to moderate due to the risk of bias in the included studies.

8.
Biomimetics (Basel) ; 7(4)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36412711

ABSTRACT

This in vitro study investigated the extrinsic tooth-whitening effect of bleaching products containing polyphosphates on the dental enamel surface compared to 10% carbamide peroxide (CP). Eighty human molars were randomly allocated into four whitening-products groups. Group A (control) was treated with 10% CP (Opalescence). The other groups with non-CP over-the-counter (OTC) products were group B = polyphosphates (iWhiteWhitening-Kit); group C = polyphosphates+fluoride (iWhite-toothpaste); and group D = sodium bicarbonate (24K-Whitening-Pen). L*, a*, b* color-parameters were spectrophotometer-recorded at baseline (T0), one day (T1), and one month (T2) post-treatment. Changes in teeth color (ΔEab) were calculated. Data were analyzed using ANOVA and the Bonferroni test (α = 0.05). Groups A, B, and D showed significant differences in ΔL*&Δa* parameters at T1, but not in Δb* at T0. Group C showed no difference for ΔL*, Δa*, Δb* at T0 and T1. Group A showed differences for ΔL*, Δa*, Δb*, at T2, while groups B, C, and D had no difference in any parameters at T0. At T1, ΔEab values = A > D> B > C (ΔEab = 13.4 > 2.4 > 2.1 > 1.2). At T2, ΔEab values increased = A > B > C > D (ΔEab = 12.2 > 10.6 > 9.2 > 2.4). In conclusion, the 10% CP and Biomimetic polyphosphate extrinsic whitening kit demonstrated the highest color change, while simulated brushing with dark stain toothpaste and a whitening pen demonstrated the lowest color change at both measurement intervals.

9.
Biomimetics (Basel) ; 7(4)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36278715

ABSTRACT

The aim of this in vitro study is to compare the color stability and surface roughness of conventional and self-blending resin composites before and after staining and aging. Three conventional composites (Filtek Z350, IPS Empress Direct, and Estalite Palfique LX5) and one self-blending (Omnichroma) resin composite were used in this study. Sixty discs were prepared and polymerized in a metal mold (n = 15 per group). Samples were then finished and polished by Layan discs. Color testing and roughness testing were measured as a baseline (T0) by a spectrophotometer and profilometry. Samples were then stained with tea for 24 h, water aged for 30 days, and then a second reading (T1) was performed. Finishing and polishing were performed again, and a third reading (T2) was collected. All groups showed significant decrease in all color parameters (L*, a*, and b*); however, after polishing, all groups showed color enhancements matching pre-experiment baseline colors in all color parameters (L*, a*, and b*), except for Estelite Palfique LX5, which showed a significant difference in L relative to the baseline. Furthermore, Estalite Palfique LX5 showed increased roughness after staining compared to the baseline, unlike other groups. No significant differences in color stability were found between self-blending composites and other composite materials. Accelerated aging and staining had minimal effects on the surface roughness of self-blending composite.

10.
Biomimetics (Basel) ; 7(2)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35645181

ABSTRACT

The aim of this study was to investigate the effects of two process-directing agents (polyaspartic acid and osteopontin) used in a polymer-induced liquid-precursor (PILP) process on the remineralization of bacteria-induced enamel demineralization. Enamel demineralization lesions (depths of about 180-200 µm) were created and exposed to Streptococcus mutans, cultured with a 10% sucrose solution for 21 days, and remineralized using a PILP process (pH = 7.4, 14 days) with a calcium phosphate solution containing either polyaspartic acid or osteopontin in the presence or absence of fluoride (0.5 ppm). The specimens were examined under scanning electron microscopy. The fluoride was successfully incorporated into the PILP remineralization process for both polyaspartic acid and osteopontin. When the fluoride was added to the PILP remineralization solution, there was more uniform remineralization throughout the lesion than with either polyaspartic acid or osteopontin alone. However, in the absence of these process-directing agents, fluoride alone showed less remineralization with the formation of a predominantly surface-only layer. The PILP remineralization process relies on the ability of process-directing agents to stabilize calcium phosphate ions and holds promise for enamel lesion remineralization, and these agents, in the presence of fluoride, seem to play an important role as a booster or supplement in the continuation of remineralization by reducing the mineral gains at the surface layer.

11.
J Dent ; 109: 103659, 2021 06.
Article in English | MEDLINE | ID: mdl-33836248

ABSTRACT

OBJECTIVES: The study evaluates the efficacy to remineralize artificial and natural dentin lesions through restorative dental procedures that include the Polymer-Induced Liquid Precursor (PILP) method comprising polyaspartic acid (pAsp). METHODS: Novel ionomeric cement compositions based on bioglass 45S5 and pAsp mixtures, as well as conditioning solutions (conditioner) containing 5 mg/mL pAsp, were developed and tested on demineralized dentin blocks (3-4 mm thick) on shallow and deep lesions with the thickness of 140 µm ± 50 and 700 µm ± 50, respectively. In the first treatment group, 20 µL of conditioner was applied to demineralized shallow (n = 3) and deep (n = 3) lesion specimens for 20 s before restoration with glass ionomer cement (RMGIC). For the PILP cement treatment group, cement was applied onto the wet surface of the demineralized specimen for both shallow (n = 3) and deep (n = 3) artificial lesions after the application of the conditioner and before the final restoration. Sample groups were compared to RMGIC restoration, for both shallow and deep lesions (n = 3 each) and treatments in PILP-solution (n = 3 for deep lesions) without restoration for 4 weeks. All of the restored specimens were immersed in simulated body fluid (SBF) solution for 2 weeks and 4 weeks for shallow and deep lesions respectively to allow for remineralization. The artificial lesion specimens were evaluated for changes in the nanomechanical profile (E-modulus and hardness) using nanoindentation. Shallow lesions were analyzed by SEM under vacuum for changes in morphology caused by PILP treatments. Also, a pilot study on human third molars with moderate lesions in dentin (n = 3) was initiated to test the efficacy of treatments in natural lesions based on mineral densities using microcomputed tomography (µCT) at 0, 1, and 3 months. RESULTS: This study showed that functional remineralization of artificial lesions using PILP-releasing restoratives occurred, indicated by an increase of the elastic modulus in shallow lesions and in the middle zone of deep artificial lesions. The mechanical improvement was significant when compared to RMGIC restoration without pAsp (P < 0.05). Nonetheless, recovery across artificial lesions was most significant when specimens were immersed into PILP-solution with restorative (P < 0.01). Furthermore, natural lesions increased in mineral volume content to a higher degree when the restorative treatment included the PILP-method (P < 0.05). However, none of the natural lesions recovered to full mineral degree regardless of the treatments. CLINICAL SIGNIFICANCE/CONCLUSION: These findings indicate the benefit of PILP applications in the functional repair of dentin caries and illustrate the challenge to integrate the PILP-method into a restorative approach in minimally invasive dental procedures.


Subject(s)
Dental Caries , Dentin , Glass Ionomer Cements , Humans , Pilot Projects , Polymers , Tooth Remineralization , X-Ray Microtomography
12.
J Contemp Dent Pract ; 22(12): 1365-1369, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35656672

ABSTRACT

AIM: To evaluate light transmission in a novel chairside CAD/CAM lithium disilicate ceramic with different thicknesses and with and without polishing. MATERIALS AND METHODS: Sixty flat samples (10 specimens/group) were fabricated from novel chairside CAD/CAM lithium disilicate ceramic blocks (Amber Mill, Hass Bio) with different thicknesses and with and without polishing as follows: (1) 1.0 mm thickness without polishing (1.0NoP); (2) 1.0 mm thickness with polishing (1.0Po); (3) 1.5 mm thickness without polishing (1.5NoP); (4) 1.5 mm thickness with polishing (1.5Po); (5) 2.0 mm thickness without polishing (2.0NoP); and (6) 2.0 mm thickness with polishing (2.0Po). Specimens were polished with a polishing system for lithium disilicate restorations following the manufacturer's recommendations. Light transmission was evaluated with a curing radiometer. Obtained data were subjected to two-way ANOVA followed by Tukey's post hoc tests (α = 0.05). SEM observations were conducted to evaluate surface microstructure. RESULTS: The light intensity through the lithium disilicate blocks with and without polishing was 200.9 mW/cm2 (16.1%) and 194.4 mW/cm2 (15.6%) for 1.0 mm specimens, 119.3 mW/cm2 (9.5%) and 111.9 mW/cm2 (9.0%) for 1.5 mm specimens, and 102.3 mW/cm2 (8.2%) and 96.0 mW/cm2 (7.7%) for 2.0 mm specimens. SEM images showed a smoother surface with polishing compared to nonpolished specimens. CONCLUSION: The thickness and polishing of the restorations were both significant influential factors in light transmission. CLINICAL SIGNIFICANCE: The range of light transmission percentage through the novel chairside CAD/CAM lithium disilicate blocks was 7.7-16.1%, suggesting that light attenuation through the material may influence the polymerization reaction of resin luting cement in the bonding process.


Subject(s)
Ceramics , Dental Porcelain , Ceramics/chemistry , Computer-Aided Design , Dental Porcelain/chemistry , Resin Cements
14.
Dent Mater J ; 39(6): 1009-1015, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-32624525

ABSTRACT

The aim of this study was to evaluate the feasibility of applying the polymer-induced liquid-precursor (PILP) method to enhance silver diamine fluoride (SDF) therapy. One hundred forty micrometer deep artificial caries lesions were treated with (A) 38% SDF solution and (B) 38% SDF containing poly-L-aspartic acid (pASP). Changes in the nanomechanical profile across the lesion were evaluated. Hydrated artificial lesions had a low reduced elastic modulus (0.3 GPa) and nanohardness (0.02 GPa) region extending about 100 µm into the lesion, with a gradual linear increase to about 168 µm where the values plateaued to around 18 GPa/1.0 GPa. Topical application of SDF resulted in significantly recovered properties (p<0.001). SDF containing pASP resulted in greater nanomechanical properties compared to SDF alone, showing similar sloped regions up to 96 µm, then SDF alone dropped while SDF containing pASP continued at a modest slope until reaching normal at 144 µm. This nanoindentation study shows enhanced SDF therapy using the PILP method.


Subject(s)
Dental Caries , Dentin , Cariostatic Agents , Dental Caries/prevention & control , Fluorides, Topical , Humans , Quaternary Ammonium Compounds , Silver Compounds
15.
Clin Exp Dent Res ; 5(5): 513-518, 2019 10.
Article in English | MEDLINE | ID: mdl-31687185

ABSTRACT

Objective: The acquisition of motor skills is a key competency for the practice of dentistry, and innate abilities have been shown to influence motor performance. Thus, finding the most efficient manual dexterity tests may predict performance of dental students. The current study used the Bruininks-Oseretsky Test of Motor Proficiency, to assess motor skills of first year (D1) and second year (D2) dental students. Materials and methods: Three fine motor subsets of the BOT-2-fine motor precision, fine motor integration, and manual dexterity-were administered to D1 and D2 dental students in 2017 and 2018. The BOT-2 subset scores of D1 students were compared with those of D2 students, who had preclinical dental experiences. For D2 students, we tested for correlations between BOT-2 subset scores and performance scores in a preclinical operative dentistry course. Results: No differences were found between D1 and D2 students for any BOT-2 subtest scores (all Ps > .09). No correlations were found between total scores of each BOT-2 subtest and the operative dentistry course for D2 students (all Ps > .20). Conclusions: Our results suggested the BOT-2 was not predictive of manual skills of dental applicants or preclinical dental students. Although we assumed students would perform well with instruction, practice, and feedback, we were unable to determine whether innate abilities influenced acquisition of manual dexterity skills. More research about the acquisition of technical clinical skills in dentistry is required.


Subject(s)
Clinical Competence/standards , Dentistry, Operative/education , Education, Dental/methods , Motor Skills/physiology , Students, Dental/statistics & numerical data , Adult , Dentistry, Operative/standards , Evaluation Studies as Topic , Female , Humans , Male , Psychomotor Performance , Young Adult
16.
Dent Mater ; 35(1): 53-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30545611

ABSTRACT

The addition of charged polymers, like poly-aspartic acid (pAsp), to mineralizing solutions allows for transport of calcium and phosphate ions into the lumen of collagen fibrils and subsequent crystallization of oriented apatite crystals by the so-called Polymer-Induced Liquid Precursor (PILP) mineralization process, leading to the functional recovery of artificial dentin lesions by intrafibrillar mineralization of collagen. OBJECTIVE: To evaluate the feasibility of applying the PILP method as part of a restorative treatment and test for effectiveness to functionally remineralize artificial lesions in dentin. MATERIALS AND METHODS: Two methods of providing pAsp to standardized artificial lesions during a restorative procedure were applied: (A) pAsp was mixed into commercial RMGI (resin modified glass ionomer) cement formulations and (B) pAsp was added at high concentration (25mg/ml) in solution to rehydrate lesions before restoring with a RMGI cement. All specimens were immersed in simulated body fluid for two weeks to allow for remineralization and then analyzed for dehydration shrinkage, integrity of cement-dentin interface, degree of mineralization, and changes in the nanomechanical profile (E-modulus) across the lesion. RESULTS: After the remineralization treatment, lesion shrinkage was significantly reduced for all treatment groups compared to demineralized samples. Pores developed in RMGI when pAsp was added. A thin layer at the dentin-cement interface, rich in polymer formed possibly from a reaction between pAsp and the RMGI. When analyzed by SEM under vacuum, most lesions delaminated from the cement interface. EDS-analysis showed some but not full recovery of calcium and phosphorous levels for treatment groups that involved pAsp. Nanoindentations placed across the interface indicated improvement for RMGI containing 40% pAsp, and were significantly elevated when lesions were rehydrated with pAsp before being restored with RMGI. In particular the most demineralized outer zone recovered substantially in the elastic modulus, suggesting that functional remineralization has been initiated by pAsp delivery upon rehydration of air-dried demineralized dentin. In contrast, the effectiveness of the RMGI on functional remineralization of dentin was minimal when pAsp was absent. SIGNIFICANCE: Incorporation of pAsp into restorative treatments using RMGIs promises to be a feasible way to induce the PILP-mineralization process in a clinical setting and to repair the structure and properties of dentin damaged by the caries process.


Subject(s)
Dental Caries , Dentin , Apatites , Dental Cements , Glass Ionomer Cements , Humans
17.
Dent Mater ; 34(9): 1378-1390, 2018 09.
Article in English | MEDLINE | ID: mdl-29935767

ABSTRACT

OBJECTIVE: The polymer-induced liquid-precursor (PILP) mineralization process has been shown to remineralize artificial dentin lesions to levels consistent with those of native dentin. However, nanoindentation revealed that the moduli of those remineralized lesions were only ∼50% that of native dentin. We hypothesize that this may be due to the PILP process having been previously optimized to obtain high amounts (∼70wt%) of intrafibrillar crystals, but without sufficient interfibrillar mineral, another significant component of dentin. METHODS: Fluoride was added to the PILP-mineralization of collagen from rat tail tendon at varying concentrations to determine if a better balance of intra- versus inter-fibrillar mineralization could be obtained, as determined by electron microscopy. Nanoindentation was used to determine if fluoridated apatite could improve the mechanical properties of the composites. RESULTS: Fluoride was successfully incorporated into the PILP-mineralization of rat tail tendon and resulted in collagen-mineral composite systems with the mineral phase of hydroxyapatite containing various levels of fluoridation. As the fluoride concentration increased, the crystals became larger and more rod-like, with an increasing tendency to form on the fibril surfaces rather than the interior. Nanomechanical testing of the mineralized tendons revealed that fluoride addition did not increase modulus over PILP mineralization alone. This likely resulted from the separated nature of collagen fibrils that comprise tendon, which does not provide lateral reinforcement and therefore may not be suited for the compressive loads of nanoindentation. SIGNIFICANCE: This work contributes to the development of minimally invasive approaches to caries treatment by determining if collagen can be functionally mineralized.


Subject(s)
Calcification, Physiologic , Collagen/chemistry , Fluorides/chemistry , Polymers/chemistry , Tooth Remineralization , Animals , Biomimetics , Microscopy, Electron , Rats
18.
PLoS One ; 12(11): e0188277, 2017.
Article in English | MEDLINE | ID: mdl-29182665

ABSTRACT

Mineralized and sound dentin matrices contain inactive preforms of proteolytic enzymes that may be activated during the demineralization cycle. In this study, we tested the hypothesis that protease inhibitors (PI) preserve demineralized collagen fibrils and other constituents of the dentin matrix and thereby affect the potential for remineralization. Artificial carious lesions with lesion depths of 140 µm were created with acetate buffer (pH = 5.0, 66 hours), and remineralized using a polymer-induced-liquid-precursor (PILP) process (pH = 7.4, 14 days) containing poly(aspartic acid) (pAsp) as the process-directing agent. De- and remineralizing procedures were performed in the presence or absence of PI. Ultrastructure and mechanical recovery of demineralized dentin following PILP remineralization were examined and measured in water with atomic force microscopy (AFM) and nanoindentation. Nanomechanical properties of hydrated artificial lesions had a low elastic modulus (ER <0.4 GPa) extending about 100 µm into the lesion, followed by a sloped region of about 140 µm depth where values reached those of normal dentin (18.0-20.0 GPa). Mapping of mineral content by both micro-FTIR and micro x-ray computed tomography correlated well with modulus profiles obtained by nanoindentation. Tissue demineralized in the presence of PI exhibited higher elastic moduli (average 2.8 GPa) across the lesion and comprised a narrow zone in the outer lesion with strongly increased modulus (up to 8 GPa; p < 0.05), which might be related to the preservation of non-collagenous proteins that appear to induce calcium phosphate mineral formation even under demineralizing physical-chemical conditions. However, mechanical aspects of remineralization through the elastic modulus change, and the micromorphological aspects with SEM and TEM observation were almost identical with PILP treatments being conducted in the presence or absence of PI. Thus, the application of the protease inhibitors (PI) seemed to be less effective in promoting the remineralization of demineralized dentin.


Subject(s)
Dentin/chemistry , Protease Inhibitors/pharmacology , Tooth Demineralization , Humans , Microscopy, Atomic Force , Microscopy, Electron , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography
19.
Braz. j. oral sci ; 14(4): 334-340, Oct.-Dec. 2015. ilus, tab
Article in English | LILACS, BBO - Dentistry | ID: lil-797258

ABSTRACT

Aim: To evaluate the effects of 10% NaOCl gel application on the dentin bond strengths and morphology of resin-dentin interfaces formed by three adhesives. Methods: Two etch-and-rinseadhesives (One-Step Plus, Bisco Inc. and Clearfil Photo Bond, Kuraray Noritake Dental) and oneself-etch adhesive (Clearfil SE Bond, Kuraray Noritake Dental) were applied on dentin accordingto the manufacturers’ instructions or after the treatment with 10% NaOCl (ED-Gel, Kuraray NoritakeDental) for 60 s. For interfacial analysis, specimens were subjected to acid-base challenge andobserved by SEM to identify the formation of the acid-base resistant zone (ABRZ). For microtensilebond strength, the same groups were investigated and the restored teeth were thermocycled(5,000 cycles) or not before testing. Bond strength data were subjected to two-way ANOVA andTukey’s test (p<0.05). Results: NaOCl application affected the bond strengths for One-Step Plusand Clearfil Photo Bond. Thermocycling reduced the bond strengths for Clearfil Photo Bond andClearfil SE Bond when used after NaOCl application and One-Step Plus when used asrecommended by manufacturer. ABRZ was observed adjacent to the hybrid layer for self-etchprimer. The etch-and-rinse systems showed external lesions after acid-base challenge and noABRZ formation when applied according to manufacturer’s instructions. Conclusions:10% NaOClchanged the morphology of the bonding interfaces and its use with etch-&-rinse adhesives reducedthe dentin bond strength. Formation of ABRZ was material-dependent and the interface morphologieswere different among the tested materials.


Subject(s)
Humans , Male , Female , Dental Bonding , Dental Caries Susceptibility , Dentin , Dentin-Bonding Agents , Microscopy, Electron, Scanning , Sodium Hypochlorite
20.
Microsc Microanal ; 21(5): 1271-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26350420

ABSTRACT

The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.


Subject(s)
Acids/metabolism , Alkalies/metabolism , Dental Cements , Dental Leakage , Dentin , Humans , Microscopy, Electron, Transmission , Molar , Silver/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...