Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 96098-96113, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37563509

ABSTRACT

The effect of inoculation of Miscanthus × giganteus Greef et Deu by the plant growth promoting rhizobacteria (PGPRs) to the phytoremediation process and physio-biochemical plant's parameters was investigated in soil contaminated with the trace elements (TEs) from the Tekeli mining complex, Kazakhstan. Yeast Trichosporon sp. CA1, strains Rhizobium sp. Zn1-1, Shinella sp. Zn5-6, and Pseudomonas sp. CHA1-4, resistant to Zn and Pb, were isolated from the rhizosphere of M × g when the plant was cultivated in the same contaminated soil. Results illustrated that inoculation improved M × g adaptability to TEs toxicity by increasing the tolerance index to 2.9. The treatment enhanced the aboveground biomass yield by up to 163%, root biomass by up to 240%, chlorophyll content by up to 30%, and Chla/b ratio by up to 21%. Through M × g active growth and development, the peak activity of antioxidant enzymes was observed: activity of superoxide dismutase and glutathione reductase was induced, while the activity of catalase and ascorbate peroxidase was inhibited. Based on bioconcentration and translocation factors it was revealed that PGPRs selectively increased the uptake of TEs or stabilised them in the M × g rhizosphere. Inoculation with PGPRs increased the stabilization of Pb, V, Cr, Co, Ni, Cu, Cd, As, and Ba in the soil and plant tissues. Further research should focus on ex situ experiments using isolated PGPRs.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Trace Elements/analysis , Biodegradation, Environmental , Lead/analysis , Poaceae/physiology , Plants , Soil/chemistry , Soil Pollutants/analysis , Plant Roots/chemistry , Metals, Heavy/analysis
2.
Microorganisms ; 11(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375018

ABSTRACT

Microbial-assisted phytoremediation is considered a more effective approach to soil rehabilitation than the sole use of plants. Mycolicibacterium sp. Pb113 and Chitinophaga sp. Zn19, heavy-metal-resistant PGPR strains originally isolated from the rhizosphere of Miscanthus × giganteus, were used as inoculants of the host plant grown in control and zinc-contaminated (1650 mg/kg) soil in a 4-month pot experiment. The diversity and taxonomic structure of the rhizosphere microbiomes, assessed with metagenomic analysis of rhizosphere samples for the 16S rRNA gene, were studied. Principal coordinate analysis showed differences in the formation of the microbiomes, which was affected by zinc rather than by the inoculants. Bacterial taxa affected by zinc and the inoculants, and the taxa potentially involved in the promotion of plant growth as well as in assisted phytoremediation, were identified. Both inoculants promoted miscanthus growth, but only Chitinophaga sp. Zn19 contributed to significant Zn accumulation in the aboveground part of the plant. In this study, the positive effect of miscanthus inoculation with Mycolicibacterium spp. and Chitinophaga spp. was demonstrated for the first time. On the basis of our data, the bacterial strains studied may be recommended to improve the efficiency of M. × giganteus phytoremediation of zinc-contaminated soil.

3.
J Environ Sci (China) ; 115: 114-125, 2022 May.
Article in English | MEDLINE | ID: mdl-34969442

ABSTRACT

The effect of oil sludge and zinc, present in soil both separately and as a mixture on the physiological and biochemical parameters of Miscanthus × giganteus plant was examined in a pot experiment. The opposite effect of pollutants on the accumulation of plant biomass was established: in comparison with uncontaminated control the oil sludge increased, and Zn reduced the root and shoot biomass. Oil sludge had an inhibitory effect on the plant photosynthetic apparatus, which intensified in the presence of Zn. The specific antioxidant response of M. × giganteus to the presence of both pollutants was a marked increase in the activity of superoxide dismutase (mostly owing to oil sludge) and glutathione-S-transferase (mostly owing to zinc) in the shoots. The participation of glutathione-S-transferase in the detoxification of both the organic and the inorganic pollutants was assumed. Zn inhibited the activity of laccase-like oxidase, whereas oil sludge promoted laccase and ascorbate oxidase activities. This finding suggests that these enzymes play a part in the oxidative detoxification of the organic pollutаnt. With both pollutants used jointly, Zn accumulation in the roots increased 6-fold, leading to increase in the efficiency of soil clean-up from the metal. In turn, Zn did not significantly affect the soil clean-up from oil sludge. This study shows for the first time the effect of co-contamination of soil with oil sludge and Zn on the physiological and biochemical characteristics of the bioenergetic plant M. × giganteus. The data obtained are important for understanding the mechanisms of phytoremediation with this plant.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Metals, Heavy/toxicity , Plant Roots/chemistry , Poaceae , Sewage , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
J Environ Sci Health B ; 56(5): 490-502, 2021.
Article in English | MEDLINE | ID: mdl-34019462

ABSTRACT

Obsolete organochlorine pesticides (OSPs) are currently prohibited as persistent organic pollutants that contaminate the environment. If undisposed, they continue to pollute soil and water, to accumulate in the food chain and to harm plants, animals and the human body. The aim of the study was to assess water and soil pollution around the storehouses of undisposed, banned OSPs and their possible genotoxic effect. The storehouses in four villages near Almaty, Kazakhstan were investigated. Chemical analysis confirmed contamination of water and soil around storehouses with OSPs. The genotoxic effect of water and soil samples was evaluated using model objects: S.typhymurium, D.melanogaster, sheep lymphocytes cultures and human lymphocytes cultures. It was found that water and soil samples caused mutagenic effect in all model systems. They increased the frequency of revertants in Salmonella, the frequency of lethal mutations in Drosophila chromosomes, and the frequency of chromosome aberrations in cultures of human and sheep lymphocytes. Although a genotoxic effect was demonstrated for each of these models, various models showed different sensitivity to the effects of pesticides and they varied degree of response. The association between the total content of OCPs in soil and the level of mutations for different model systems was discovered.


Subject(s)
Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , Mutagens/analysis , Pesticides/analysis , Animals , Environmental Monitoring , Environmental Pollutants/toxicity , Humans , Hydrocarbons, Chlorinated/toxicity , Kazakhstan , Mutagens/toxicity , Pesticides/toxicity , Risk Assessment
5.
Environ Sci Pollut Res Int ; 28(13): 16092-16106, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33245538

ABSTRACT

The organochlorine pesticides (OCPs) have raised concerns about being persistent and toxic to the environment. Phytoremediation techniques show promise for the revitalization of polluted soils. The current study focused on optimizing the phytoremediation potential of Miscanthus sinensis And. (M. sinensis), second-generation energy crop, by exploring two soil amendments: Tween 20 and activated carbon (AC). The results showed that when M. sinensis grew in OCP-polluted soil without amendments to it, the wide range of compounds, i.e., α-HCH, ß-HCH, γ-HCH, 2.4-DDD, 4.4-DDE, 4.4-DDD, 4.4-DDT, aldrin, dieldrin, and endrin, was accumulated by the plant. The introduction of soil amendments improved the growth parameters of M. sinensis. The adding of Tween 20 enhanced the absorption and transmigration to aboveground biomass for some OCPs; i.e., for γ-HCH, the increase was by 1.2, for 4.4-DDE by 8.7 times; this effect was due to the reduction of the hydrophobicity which made pesticides more bioavailable for the plant. The adding of AC reduced OCPs absorption by plants, consequently, for γ-HCH by 2.1 times, 4.4-DDD by 20.5 times, 4.4-DDE by 1.4 times, 4.4-DDT by 8 times, α-HCH was not adsorbed at all, and decreased the translocation to the aboveground biomass: for 4.4-DDD by 31 times, 4.4-DDE by 2.8 times, and γ-HCH by 2 times; this effect was due to the decrease in the bioavailability of pesticides. Overall, the amendment of OCP-polluted soil by Tween 20 speeds the remediation process, and incorporation of AC permitted to produce the relatively clean biomass for energy.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Soil Pollutants , Biodegradation, Environmental , Charcoal , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polysorbates , Soil , Soil Pollutants/analysis
6.
Int J Phytoremediation ; 23(5): 482-491, 2021.
Article in English | MEDLINE | ID: mdl-33000955

ABSTRACT

580 microbial strains were isolated from the rhizosphere of the plants Cucurbita pepo L. and Xanthium strumarium grown on soil contaminated with dichlorodiphenyltrichloroethane (DDT) and its metabolites. During the cultivation, two bacterial strains were selected because of their ability to grow on media containing 0.5-5.0 mg L-1 of dichlorodiphenyldichloroethylene (DDE) as the sole carbon source. They were identified as Bacillus vallismortis and Bacillus aryabhattai. Both of these species were shown to have a high capacity for the utilization of DDE - more than 90% of which was consumed after 21 days of cultivation. Laboratory experiments were carried out then to assess the possibility of using these strains for the decontamination of organochlorine pesticides (OCPs) contaminated soils. Inoculation of C. pepo and X. strumarium with our isolates B. vallismortis and B. aryabhattai resulted in a reduction of the pollutant stress to the plants as shown by an increase both in aboveground and in root biomass. The microorganisms enhanced the uptake and phytostabilization potential of C. pepo and X. strumarium and can be applied for the treatment of DDE contaminated soils.


Subject(s)
Pesticides , Soil Pollutants , Bacillus , Biodegradation, Environmental , Soil , Soil Pollutants/analysis
7.
Environ Sci Pollut Res Int ; 26(13): 13320-13333, 2019 May.
Article in English | MEDLINE | ID: mdl-30903469

ABSTRACT

Contamination of soil by heavy metals is among the important environmental problems due to their toxicity and negative impact to human health and the environment. An effective method for cleaning the soil from heavy metals is phytoremediation using the second-generation bioenergy species Miscanthus × giganteus. The purpose of this research is to study the benefits of M. × giganteus cultivation at the soils taken from the mining and former military sites contaminated by As, Pb, Zn, Co, Ni, Cr, Cu, V, Mn, Sr, and U as well as at the soil artificially contaminated by Zn and Pb, to evaluate the physiological parameters of the plant, to establish peculiarities of the phytoremediation process, and to characterize the behavior of the plant in relation to the nature and concentrations of the metals in the soils. Results showed that M. × giganteus was resistant to heavy metals (tolerance index ≥ 1) and that the greatest portion of metals accumulated in the root system. The morphological parameters of the plant while grown on different soils are influenced by soil type and the content of contaminants. The stress effect while growing M. × giganteus on soil artificially contaminated by Zn and Pb was evaluated by measuring the content of pigments (chlorophylls a, b, and carotenoids) in the plant's leaves. The decrease in the total content of chlorophylls, Сa + b/Сcar and transpiration rate of water along with the increase in the water absorbing capacity were observed. The accumulation of heavy metals in different parts of the plant was determined; bioaccumulation coefficient and values of translocation factor were calculated. The obtained results showed that M. × giganteus was an excluder plant for nine highly toxic elements (As, Pb, Zn, Co, Ni, Cr, Cu, V, U) and an accumulator species for the moderately dangerous elements (Mn, Sr). Further research will be focused on the extraction of stable stimulated plant-growth-promoting rhizobacteria from the rhizosphere of M. × giganteus and formulation on that base the plant-bacterial associations as well as on the comparison of the plant physiological parameters, biochemical soil activity, and accumulation of heavy metals in the Miscanthus tissues between first and second vegetations.


Subject(s)
Metals, Heavy/analysis , Poaceae/physiology , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Metals, Heavy/chemistry , Military Personnel , Mining , Plants , Poaceae/chemistry , Rhizosphere
8.
Environ Monit Assess ; 188(6): 358, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27194234

ABSTRACT

Concentrations of selected organochlorine pesticides (OCPs), i.e., 4,4'-dichlorodiphenyltrichloroethane (p,p'-DDT), its metabolites (p,p'-DDE, p,p'-DDD), and hexachlorocyclohexanes (HCHs), have been determined in 100 soil samples collected from a contaminated site centered around a former storehouse in the Kyzyl Kairat village, Almaty region, Kazakhstan, which constitutes an exemplary case example. The OCPs were observed in all analyzed soil samples, with predominance of α-HCH, p,p'-DDD, p,p'-DDE, and p,p'-DDT. Total concentrations ranged from 1.38 to 11,100 µg kg(-1) with an average value of 1040 µg kg(-1) for DDT and its metabolites and 0.1 to 438 µg kg(-1) with an average value of 24 µg kg(-1) for HCHs. The observed concentrations of the OCPs were found to be in agreement with previous studies and are rationalized in terms of the possible degradation pathways of DDTs and HCHs. Spatial distribution patterns of OCPs are elucidated by contour maps. Observed concentrations of the OCPs were used to evaluate the cancer risk to humans via ingestion, dermal contact, and inhalation of soil particles. The cancer risk mainly occurs from ingestion, whereas dermal exposure contributes to a minor extent to the total cancer risk. The risk associated with inhalation was found to be negligible. The total cancer risk for the studied OCPs were found to be p,p'-DDT ˃ p,p'-DDE ˃ p,p'-DDD ˃ α-HCH ˃ ß-HCH ˃ γ-HCH.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , Soil/chemistry , DDT/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Geographic Mapping , Hexachlorocyclohexane/analysis , Humans , Kazakhstan , Risk Assessment , Rural Population , Soil/standards
9.
Xenotransplantation ; 20(6): 469-80, 2013.
Article in English | MEDLINE | ID: mdl-24289470

ABSTRACT

BACKGROUND: The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. METHODS: Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3-8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. RESULTS: JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. CONCLUSION: Our study demonstrated that some types of human cytokines and interferon activate intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways.


Subject(s)
Cytokines/metabolism , Eye/immunology , Eye/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Sus scrofa/immunology , Sus scrofa/metabolism , Animals , Cell Proliferation , Ciliary Body/cytology , Ciliary Body/immunology , Ciliary Body/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Eye/cytology , Female , Heterografts , Humans , Interferons/metabolism , Iris/cytology , Iris/immunology , Iris/metabolism , Lens, Crystalline/cytology , Lens, Crystalline/immunology , Lens, Crystalline/metabolism , Male , Signal Transduction , Species Specificity
10.
Environ Sci Pollut Res Int ; 20(4): 2054-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22890508

ABSTRACT

In Kazakhstan, there is a problem of finding ways to clean local sites contaminated with pesticides. In particular, such sites are the deserted and destroyed storehouses where these pesticides were stored; existing storehouses do not fulfill sanitary standards. Phytoremediation is one potential method for reducing risk from these pesticides. Genetic heterogeneity of populations of wild and weedy species growing on pesticide-contaminated soil provides a source of plant species tolerant to these conditions. These plant species may be useful for phytoremediation applications. In 2008-2009 and 2011, we surveyed substances stored in 80 former pesticide storehouses in Kazakhstan (Almaty oblast) to demonstrate an inventory process needed to understand the obsolete pesticide problem throughout the country, and observed a total of 354.7 t of obsolete pesticides. At the sites, we have found organochlorine pesticides residues in soil including metabolites of dichlorodiphenyltrichloroethane and isomers of hexachlorocyclohexane. Twenty-four of the storehouse sites showed pesticides concentrations in soil higher than maximum allowable concentration which is equal to 100 µg kg(-1) in Kazakhstan. Seventeen pesticide-tolerant wild plant species were selected from colonizing plants that grew into/near the former storehouse's pesticides. The results have shown that colonizing plant annual and biannual species growing on soils polluted by pesticides possess ability to accumulate organochlorine pesticide residues and reduce pesticide concentrations in soil. Organochlorine pesticides taken up by the plants are distributed unevenly in different plant tissues. The main organ of organochlorine pesticide accumulation is the root system. The accumulation rate of organochlorine pesticides was found to be a specific characteristic of plant species and dependent on the degree of soil contamination. This information can be used for technology development of phytoremediation of pesticide-contaminated soils.


Subject(s)
Biodegradation, Environmental , DDT , Hexachlorocyclohexane , Pesticide Residues , Soil Pollutants , DDT/analysis , Environmental Monitoring , Hexachlorocyclohexane/analysis , Kazakhstan , Pesticide Residues/analysis , Plant Components, Aerial/chemistry , Plant Roots/chemistry , Soil Pollutants/analysis , Xanthium/chemistry , Xanthium/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...