Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37707949

ABSTRACT

Application of classic liver-directed gene replacement strategies is limited in genetic diseases characterized by liver injury due to hepatocyte proliferation, resulting in decline of therapeutic transgene expression and potential genotoxic risk. Wilson disease (WD) is a life-threatening autosomal disorder of copper homeostasis caused by pathogenic variants in copper transporter ATP7B and characterized by toxic copper accumulation, resulting in severe liver and brain diseases. Genome editing holds promise for the treatment of WD; nevertheless, to rescue copper homeostasis, ATP7B function must be restored in at least 25% of the hepatocytes, which surpasses by far genome-editing correction rates. We applied a liver-directed, nuclease-free genome editing approach, based on adeno-associated viral vector-mediated (AAV-mediated) targeted integration of a promoterless mini-ATP7B cDNA into the albumin (Alb) locus. Administration of AAV-Alb-mini-ATP7B in 2 WD mouse models resulted in extensive liver repopulation by genome-edited hepatocytes holding a proliferative advantage over nonedited ones, and ameliorated liver injury and copper metabolism. Furthermore, combination of genome editing with a copper chelator, currently used for WD treatment, achieved greater disease improvement compared with chelation therapy alone. Nuclease-free genome editing provided therapeutic efficacy and may represent a safer and longer-lasting alternative to classic gene replacement strategies for WD.


Subject(s)
Hepatolenticular Degeneration , Mice , Animals , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/drug therapy , Copper/metabolism , Gene Editing , Hepatocytes/metabolism
2.
Mol Ther ; 31(9): 2651-2661, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37394797

ABSTRACT

Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.


Subject(s)
Liver Diseases , Transient Receptor Potential Channels , alpha 1-Antitrypsin , Animals , Humans , Mice , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Liver Diseases/metabolism , Lysosomes/metabolism , Mice, Transgenic , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
3.
EMBO Mol Med ; 15(5): e16877, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36987696

ABSTRACT

Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.


Subject(s)
Birt-Hogg-Dube Syndrome , Cysts , Kidney Neoplasms , Humans , Mice , Animals , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Transcription Factors , Carcinogenesis/genetics
4.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36647689

ABSTRACT

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Subject(s)
Gyrate Atrophy , Retinal Degeneration , Animals , Mice , Gyrate Atrophy/genetics , Gyrate Atrophy/pathology , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Ornithine/genetics , Ornithine/metabolism , Genetic Therapy , Liver/pathology
6.
Nat Commun ; 13(1): 5212, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064721

ABSTRACT

Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases.


Subject(s)
Ammonia , Carbamoyl-Phosphate Synthase (Ammonia) , Hyperammonemia , Urea , Uridine Diphosphate , Acetylglucosamine , Ammonia/metabolism , Animals , Biocatalysis , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Disease Models, Animal , Glycosylation , Humans , Hyperammonemia/genetics , Hyperammonemia/metabolism , Mammals/metabolism , Mice , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Protein Processing, Post-Translational/genetics , Urea/metabolism , Uridine Diphosphate/genetics , Uridine Diphosphate/metabolism
7.
Mol Ther Methods Clin Dev ; 26: 495-504, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36092366

ABSTRACT

Wilson disease (WD) is a genetic disorder of copper homeostasis, caused by deficiency of the copper transporter ATP7B. Gene therapy with recombinant adeno-associated vectors (AAV) holds promises for WD treatment. However, the full-length human ATP7B gene exceeds the limited AAV cargo capacity, hampering the applicability of AAV in this disease context. To overcome this limitation, we designed a dual AAV vector approach using split intein technology. Split inteins catalyze seamless ligation of two separate polypeptides in a highly specific manner. We selected a DnaE intein from Nostoc punctiforme (Npu) that recognizes a specific tripeptide in the human ATP7B coding sequence. We generated two AAVs expressing either the 5'-half of a codon-optimized human ATP7B cDNA followed by the N-terminal Npu DnaE intein or the C-terminal Npu DnaE intein followed by the 3'-half of ATP7B cDNA, under the control of a liver-specific promoter. Intravenous co-injection of the two vectors in wild-type and Atp7b -/- mice resulted in efficient reconstitution of full-length ATP7B protein in the liver. Moreover, Atp7b -/- mice treated with intein-ATP7B vectors were protected from liver damage and showed improvements in copper homeostasis. Taken together, these data demonstrate the efficacy of split intein technology to drive the reconstitution of full-length human ATP7B and to rescue copper-mediated liver damage in Atp7b -/- mice, paving the way to the development of a new gene therapy approach for WD.

8.
Front Aging Neurosci ; 14: 878958, 2022.
Article in English | MEDLINE | ID: mdl-35847673

ABSTRACT

Autophagy is a critical metabolic process that acts as a major self-digestion and recycling pathway contributing to maintain cellular homeostasis. An emerging field of research supports the therapeutic modulation of autophagy for treating human neurodegenerative disorders, in which toxic aggregates are accumulated in neurons. Our previous study identified Ezrin protein as an inhibitor of autophagy and lysosomal functions in the retina; thus, in turn, identifying it as a potential pharmacological target for increasing retinal cell clearance to treat inherited retinal dystrophies in which misfolded proteins have accumulated. This study aimed to verify the therapeutic inhibition of Ezrin to induce clearance of toxic aggregates in a mouse model for a dominant form of retinitis pigmentosa (i.e., RHOP23H/+). We found that daily inhibition of Ezrin significantly decreased the accumulation of misfolded RHOP23H aggregates. Remarkably, induction of autophagy, by a drug-mediated pulsatile inhibition of Ezrin, promoted the lysosomal clearance of disease-linked RHOP23H aggregates. This was accompanied with a reduction of endoplasmic reticulum (ER)-stress, robust decrease of photoreceptors' cell death, amelioration in both retinal morphology and function culminating in a better preservation of vision. Our study opens new perspectives for a pulsatile pharmacological induction of autophagy as a mutation-independent therapy paving the way toward a more effective therapeutic strategy to treat these devastating retinal disorders due to an accumulation of intracellular toxic aggregates.

9.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35491676

ABSTRACT

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Subject(s)
Hemophilia A , Inteins , Animals , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors , Hemophilia A/genetics , Hemophilia A/therapy , Inteins/genetics , Liver , Mice , Trans-Splicing
10.
Nat Commun ; 13(1): 1963, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414130

ABSTRACT

Challenges to the widespread application of gene therapy with adeno-associated viral (AAV) vectors include dominant conditions due to gain-of-function mutations which require allele-specific knockout, as well as long-term transgene expression from proliferating tissues, which is hampered by AAV DNA episomal status. To overcome these challenges, we used CRISPR/Cas9-mediated homology-independent targeted integration (HITI) in retina and liver as paradigmatic target tissues. We show that AAV-HITI targets photoreceptors of both mouse and pig retina, and this results in significant improvements to retinal morphology and function in mice with autosomal dominant retinitis pigmentosa. In addition, we show that neonatal systemic AAV-HITI delivery achieves stable liver transgene expression and phenotypic improvement in a mouse model of a severe lysosomal storage disease. We also show that HITI applications predominantly result in on-target editing. These results lay the groundwork for the application of AAV-HITI for the treatment of diseases affecting various organs.


Subject(s)
Dependovirus , Gene Editing , Animals , CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing/methods , Genetic Vectors/genetics , Liver , Mice , Retina/metabolism , Swine
11.
EMBO Mol Med ; 13(11): e14434, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34606154

ABSTRACT

Pompe disease is a metabolic myopathy due to acid alpha-glucosidase deficiency. In addition to glycogen storage, secondary dysregulation of cellular functions, such as autophagy and oxidative stress, contributes to the disease pathophysiology. We have tested whether oxidative stress impacts on enzyme replacement therapy with recombinant human alpha-glucosidase (rhGAA), currently the standard of care for Pompe disease patients, and whether correction of oxidative stress may be beneficial for rhGAA therapy. We found elevated oxidative stress levels in tissues from the Pompe disease murine model and in patients' cells. In cells, stress levels inversely correlated with the ability of rhGAA to correct the enzymatic deficiency. Antioxidants (N-acetylcysteine, idebenone, resveratrol, edaravone) improved alpha-glucosidase activity in rhGAA-treated cells, enhanced enzyme processing, and improved mannose-6-phosphate receptor localization. When co-administered with rhGAA, antioxidants improved alpha-glucosidase activity in tissues from the Pompe disease mouse model. These results indicate that oxidative stress impacts on the efficacy of enzyme replacement therapy in Pompe disease and that manipulation of secondary abnormalities may represent a strategy to improve the efficacy of therapies for this disorder.


Subject(s)
Glycogen Storage Disease Type II , Animals , Enzyme Replacement Therapy , Glycogen/metabolism , Glycogen Storage Disease Type II/drug therapy , Humans , Mice , Oxidative Stress , alpha-Glucosidases/metabolism , alpha-Glucosidases/therapeutic use
12.
Mol Ther Methods Clin Dev ; 20: 247-257, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33473358

ABSTRACT

Adeno-associated viral (AAV) vectors have emerged as the preferred platform for in vivo gene transfer because of their combined efficacy and safety. However, insertional mutagenesis with the subsequent development of hepatocellular carcinomas (HCCs) has been recurrently noted in newborn mice treated with high doses of AAV, and more recently, the association of wild-type AAV integrations in a subset of human HCCs has been documented. Here, we address, in a comprehensive, prospective study, the long-term risk of tumorigenicity in young adult mice following delivery of single-stranded AAVs targeting liver. HCC incidence in mice treated with therapeutic and reporter AAVs was low, in contrast to what has been previously documented in mice treated as newborns with higher doses of AAV. Specifically, HCCs developed in 6 out 76 of AAV-treated mice, and a pathogenic integration of AAV was found in only one tumor. Also, no evidence of liver tumorigenesis was found in juvenile AAV-treated mucopolysaccharidosis type VI (MPS VI) cats followed as long as 8 years after vector administration. Together, our results support the low risk of tumorigenesis associated with AAV-mediated gene transfer targeting juvenile/young adult livers, although constant monitoring of subjects enrolled in AAV clinical trial is advisable.

13.
Nature ; 585(7826): 597-602, 2020 09.
Article in English | MEDLINE | ID: mdl-32612235

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1-3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism that is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of TFEB-unlike other substrates of mTORC1, such as S6K and 4E-BP1- is strictly dependent on the amino-acid-mediated activation of RagC and RagD GTPases, but is insensitive to RHEB activity induced by growth factors. This mechanism has a crucial role in Birt-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivity in a mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in kidneys of these mice fully rescued the disease phenotype and associated lethality, and normalized mTORC1 activity. Our findings identify a mechanism that enables differential phosphorylation of mTORC1 substrates, the dysregulation of which leads to kidney cysts and cancer.


Subject(s)
Birt-Hogg-Dube Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Cell Line , Disease Models, Animal , Enzyme Activation , HeLa Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Substrate Specificity , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
14.
J Biol Chem ; 295(38): 13213-13223, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32723872

ABSTRACT

α1-Antitrypsin (AAT) encoded by the SERPINA1 gene is an acute-phase protein synthesized in the liver and secreted into the circulation. Its primary role is to protect lung tissue by inhibiting neutrophil elastase. The Z allele of SERPINA1 encodes a mutant AAT, named ATZ, that changes the protein structure and leads to its misfolding and polymerization, which cause endoplasmic reticulum (ER) stress and liver disease through a gain-of-function toxic mechanism. Hepatic retention of ATZ results in deficiency of one of the most important circulating proteinase inhibitors and predisposes to early-onset emphysema through a loss-of-function mechanism. The pathogenetic mechanisms underlying the liver disease are not completely understood. C/EBP-homologous protein (CHOP), a transcription factor induced by ER stress, was found among the most up-regulated genes in livers of PiZ mice that express ATZ and in human livers of patients homozygous for the Z allele. Compared with controls, juvenile PiZ/Chop-/- mice showed reduced hepatic ATZ and a transcriptional response indicative of decreased ER stress by RNA-Seq analysis. Livers of PiZ/Chop-/- mice also showed reduced SERPINA1 mRNA levels. By chromatin immunoprecipitations and luciferase reporter-based transfection assays, CHOP was found to up-regulate SERPINA1 cooperating with c-JUN, which was previously shown to up-regulate SERPINA1, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele. In summary, CHOP and c-JUN up-regulate SERPINA1 transcription and play an important role in hepatic disease by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.


Subject(s)
Liver Diseases/metabolism , Liver/metabolism , Mutation , Protein Aggregation, Pathological/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor CHOP/metabolism , alpha 1-Antitrypsin/biosynthesis , Alleles , Animals , Endoplasmic Reticulum Stress/genetics , Humans , Liver/pathology , Liver Diseases/genetics , Liver Diseases/pathology , Mice , Mice, Knockout , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Folding , Proto-Oncogene Proteins c-jun/genetics , Transcription Factor CHOP/genetics , Transcription, Genetic , Up-Regulation , alpha 1-Antitrypsin/genetics
15.
EMBO J ; 39(8): e102468, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32154600

ABSTRACT

Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light-dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211-/- mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211-/- phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.


Subject(s)
Calcium/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Lysosomes/metabolism , MicroRNAs/metabolism , Animals , Autophagy , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Down-Regulation , Light , Lysosomes/ultrastructure , Mice , Mice, Knockout , MicroRNAs/genetics , Phagocytosis , Phagosomes/metabolism , Phagosomes/ultrastructure , Retinal Pigment Epithelium/metabolism
16.
Front Cell Dev Biol ; 8: 132, 2020.
Article in English | MEDLINE | ID: mdl-32195255

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS-IIIA, Sanfilippo A) is one of the most severe lysosomal storage disorder (LSD) caused by the inherited deficiency of sulfamidase, a lysosomal sulfatase enzyme involved in the stepwise degradation of heparan sulfates (HS). MPS-IIIA patients show multisystemic problems, including a strong impairment of central nervous system (CNS), mild somatic involvement, and ocular manifestations that result in significant visual impairment. Despite the CNS and somatic pathology have been well characterized, studies on visual system and function remain partially explored. Here, we characterized the retina morphology and functionality in MPS-IIIA mouse model and analyzed how the SGSH deficiency affects the autophagic flux. MPS-IIIA mice exhibited a progressive retinal dystrophy characterized by significant alterations in visual function. The photoreceptor degeneration was associated with HS accumulation and a block of autophagy pathway. These events caused a reactive microgliosis, and a development of apoptotic processes in MPS-IIIA mouse retina. Overall, this study provides the first phenotypic spectrum of retinal disorders in MPS-IIIA and significantly contributes for diagnosis, counseling, and potential therapies development.

17.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32087148

ABSTRACT

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Subject(s)
Autophagy/drug effects , Bridged-Ring Compounds/administration & dosage , Mucopolysaccharidosis III/drug therapy , Neurodegenerative Diseases/drug therapy , Organophosphates/administration & dosage , Amyloid/antagonists & inhibitors , Amyloid/metabolism , Animals , Brain/metabolism , Bridged-Ring Compounds/pharmacology , Cell Body/metabolism , Disease Models, Animal , Male , Mice , Mucopolysaccharidosis III/complications , Mucopolysaccharidosis III/metabolism , Neurodegenerative Diseases/etiology , Organophosphates/pharmacology , Treatment Outcome
18.
Mol Ther Methods Clin Dev ; 15: 333-342, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31788497

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS-IIIA) is a lysosomal storage disorder (LSD) caused by inherited defect of sulfamidase, a lysosomal sulfatase. MPS-IIIA is one of the most common and severe forms of LSDs with CNS involvement. Presently there is no cure. Here we have developed a new gene delivery approach for the treatment of MPS-IIIA based on the use of a modified version of sulfamidase expression cassette. This cassette encodes both a chimeric sulfamidase containing an alternative signal peptide (sp) to improve enzyme secretion and sulfatase-modifying factor 1 (SUMF1) to increase sulfamidase post-translational activation rate. We demonstrate that improved secretion and increased activation of sulfamidase act synergistically to enhance enzyme biodistribution in wild-type (WT) pigs upon intrathecal adeno-associated virus serotype 9 (AAV9)-mediated gene delivery. Translating such gene delivery strategy to a mouse model of MPS-IIIA results in a rescue of brain pathology, including memory deficit, as well as improvement in somatic tissues. These data may pave the way for developing effective gene delivery replacement protocols for the treatment of MPS-IIIA patients.

19.
Genet Med ; 21(3): 591-600, 2019 03.
Article in English | MEDLINE | ID: mdl-29997386

ABSTRACT

PURPOSE: We studied microRNAs as potential biomarkers for Pompe disease. METHODS: We analyzed microRNA expression by small RNA-seq in tissues from the disease murine model at two different ages (3 and 9 months), and in plasma from Pompe patients. RESULTS: In the mouse model we found 211 microRNAs that were differentially expressed in gastrocnemii and 66 in heart, with a different pattern of expression at different ages. In a preliminary analysis in plasma from six patients 55 microRNAs were differentially expressed. Sixteen of these microRNAs were common to those dysregulated in mouse tissues. These microRNAs are known to modulate the expression of genes involved in relevant pathways for Pompe disease pathophysiology (autophagy, muscle regeneration, muscle atrophy). One of these microRNAs, miR-133a, was selected for further quantitative real-time polymerase chain reaction analysis in plasma samples from 52 patients, obtained from seven Italian and Dutch biobanks. miR-133a levels were significantly higher in Pompe disease patients than in controls and correlated with phenotype severity, with higher levels in infantile compared with late-onset patients. In three infantile patients miR-133a decreased after start of enzyme replacement therapy and evidence of clinical improvement. CONCLUSION: Circulating microRNAs may represent additional biomarkers of Pompe disease severity and of response to therapy.


Subject(s)
Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , MicroRNAs/genetics , Adult , Animals , Biomarkers/blood , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , MicroRNAs/physiology , Middle Aged
20.
J Hepatol ; 69(2): 325-335, 2018 08.
Article in English | MEDLINE | ID: mdl-29580866

ABSTRACT

BACKGROUND & AIMS: Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. METHODS: Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. RESULTS: Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. CONCLUSION: PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. LAY SUMMARY: Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival.


Subject(s)
Isocoumarins/pharmacology , L-Lactate Dehydrogenase/metabolism , Liver Failure, Acute , Liver , Pyruvate Dehydrogenase Complex/metabolism , Animals , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gene Expression Profiling , Liver/drug effects , Liver/metabolism , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...