Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35486541

ABSTRACT

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutagenesis, Insertional , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Nature ; 588(7839): 712-716, 2020 12.
Article in English | MEDLINE | ID: mdl-33328633

ABSTRACT

Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system1-6. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, we performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. We obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and we therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease.


Subject(s)
Mitochondria/drug effects , Mitochondria/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects , Animals , Cell Proliferation/drug effects , Cryoelectron Microscopy , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/metabolism , Down-Regulation/drug effects , Enzyme Stability/drug effects , Female , Gene Expression Regulation/drug effects , Genes, Mitochondrial/drug effects , Humans , Male , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
4.
ChemMedChem ; 14(11): 1074-1078, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30945468

ABSTRACT

Despite the availability of hundreds of antibiotic drugs, infectious diseases continue to remain one of the most notorious health issues. In addition, the disparity between the spread of multidrug-resistant pathogens and the development of novel classes of antibiotics exemplify an important unmet medical need that can only be addressed by identifying novel targets. Herein we demonstrate, by the development of the first in vivo active DegS inhibitors based on a pyrazolo[1,5-a]-1,3,5-triazine scaffold, that the serine protease DegS and the cell envelope stress-response pathway σE represent a target for generating antibiotics with a novel mode of action. Moreover, DegS inhibition is synergistic with well-established membrane-perturbing antibiotics, thereby opening promising avenues for rational antibiotic drug design.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Serine Proteinase Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
5.
Stem Cell Reports ; 12(3): 502-517, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30773488

ABSTRACT

Neuroinflammation is a hallmark of neurological disorders and is accompanied by the production of neurotoxic agents such as nitric oxide. We used stem cell-based phenotypic screening and identified small molecules that directly protected neurons from neuroinflammation-induced degeneration. We demonstrate that inhibition of CDK5 is involved in, but not sufficient for, neuroprotection. Instead, additional inhibition of GSK3ß is required to enhance the neuroprotective effects of CDK5 inhibition, which was confirmed using short hairpin RNA-mediated knockdown of CDK5 and GSK3ß. Quantitative phosphoproteomics and high-content imaging demonstrate that neurite degeneration is mediated by aberrant phosphorylation of multiple microtubule-associated proteins. Finally, we show that our hit compound protects neurons in vivo in zebrafish models of motor neuron degeneration and Alzheimer's disease. Thus, we demonstrate an overlap of CDK5 and GSK3ß in mediating the regulation of the neuronal cytoskeleton and that our hit compound LDC8 represents a promising starting point for neuroprotective drugs.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Cytoskeleton/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation/metabolism , Nerve Degeneration/metabolism , Neurons/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cytoskeleton/drug effects , Humans , Inflammation/drug therapy , Microtubules/drug effects , Microtubules/metabolism , Nerve Degeneration/drug therapy , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects , Zebrafish/metabolism
6.
Sci Immunol ; 3(26)2018 08 24.
Article in English | MEDLINE | ID: mdl-30143555

ABSTRACT

The death of a cell is an inevitable part of its biology. During homeostasis, most cells die through apoptosis. If homeostasis is disturbed, cell death can switch to proinflammatory forms of death, such as necroptosis, pyroptosis, or NETosis. We demonstrate that the formation of neutrophil extracellular traps (NETs), a special form of neutrophil cell death that releases chromatin structures to the extracellular space, is dependent on gasdermin D (GSDMD). GSDMD is a pore-forming protein and an executor of pyroptosis. We screened a chemical library and found a small molecule based on the pyrazolo-oxazepine scaffold that efficiently blocks NET formation and GSDMD-mediated pyroptotic cell death in human cells. During NETosis, GSDMD is proteolytically activated by neutrophil proteases and, in turn, affects protease activation and nuclear expansion in a feed-forward loop. In addition to the central role of GSDMD in pyroptosis, we propose that GSDMD also plays an essential function in NETosis.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Cell Death/physiology , Extracellular Traps/physiology , Neoplasm Proteins/physiology , Neutrophils/physiology , Animals , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mice, Mutant Strains , Peptide Hydrolases/pharmacology , Phosphate-Binding Proteins
7.
Oncotarget ; 9(51): 29634-29643, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-30038709

ABSTRACT

(-)-Englerin A (EA) is a natural product which has potent cytotoxic effects on renal cell carcinoma cells and other types of cancer cell but not non-cancer cells. Although selectively cytotoxic to cancer cells, adverse reaction in mice and rats has been suggested. EA is a remarkably potent activator of ion channels formed by Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) and TRPC4 is essential for EA-mediated cancer cell cytotoxicity. Here we specifically investigated the relevance of TRPC4 and TRPC5 to the adverse reaction. Injection of EA (2 mg.kg-1 i.p.) adversely affected mice for about 1 hour, manifesting as a marked reduction in locomotor activity, after which they fully recovered. TRPC4 and TRPC5 single knockout mice were partially protected and double knockout mice fully protected. TRPC4/TRPC5 double knockout mice were also protected against intravenous injection of EA. Importance of TRPC4/TRPC5 channels was further suggested by pre-administration of Compound 31 (Pico145), a potent and selective small-molecule inhibitor of TRPC4/TRPC5 channels which did not cause adverse reaction itself but prevented adverse reaction to EA. EA was detected in the plasma but not the brain and so peripheral mechanisms were implicated but not identified. The data confirm the existence of adverse reaction to EA in mice and suggest that it depends on a combination of TRPC4 and TRPC5 which therefore overlaps partially with TRPC4-dependent cancer cell cytotoxicity. The underlying nature of the observed adverse reaction to EA, as a consequence of TRPC4/TRPC5 channel activation, remains unclear and warrants further investigation.

8.
ACS Chem Biol ; 13(5): 1307-1312, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29658704

ABSTRACT

Covalent modifications of nonactive site lysine residues by small molecule probes has recently evolved into an important strategy for interrogating biological systems. Here, we report the discovery of a class of bioreactive compounds that covalently modify lysine residues in DegS, the rate limiting protease of the essential bacterial outer membrane stress response pathway. These modifications lead to an allosteric activation and allow the identification of novel residues involved in the allosteric activation circuit. These findings were validated by structural analyses via X-ray crystallography and cell-based reporter systems. We anticipate that our findings are not only relevant for a deeper understanding of the structural basis of allosteric activation in DegS and other HtrA serine proteases but also pinpoint an alternative use of covalent small molecules for probing essential biochemical mechanisms.


Subject(s)
Lysine/chemistry , Molecular Probes/chemistry , Allosteric Regulation , Bacterial Proteins/chemistry , Catalysis , Crystallography, X-Ray , Protein Conformation
9.
Cell Chem Biol ; 25(4): 357-369.e6, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29396292

ABSTRACT

Aberrant hedgehog (Hh) signaling contributes to the pathogenesis of multiple cancers. Available inhibitors target Smoothened (Smo), which can acquire mutations causing drug resistance. Thus, compounds that inhibit Hh signaling downstream of Smo are urgently needed. We identified dynarrestin, a novel inhibitor of cytoplasmic dyneins 1 and 2. Dynarrestin acts reversibly to inhibit cytoplasmic dynein 1-dependent microtubule binding and motility in vitro without affecting ATP hydrolysis. It rapidly and reversibly inhibits endosome movement in living cells and perturbs mitosis by inducing spindle misorientation and pseudoprometaphase delay. Dynarrestin reversibly inhibits cytoplasmic dynein 2-dependent intraflagellar transport (IFT) of the cargo IFT88 and flux of Smo within cilia without interfering with ciliogenesis and suppresses Hh-dependent proliferation of neuronal precursors and tumor cells. As such, dynarrestin is a valuable tool for probing cytoplasmic dynein-dependent cellular processes and a promising compound for medicinal chemistry programs aimed at development of anti-cancer drugs.


Subject(s)
Cytoplasmic Dyneins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Biological Transport/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cilia/drug effects , Cilia/metabolism , Cytoplasmic Dyneins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Humans , Mice , Mitosis/drug effects , NIH 3T3 Cells , Protein Transport/drug effects , Signal Transduction/drug effects
10.
Biochim Biophys Acta Biomembr ; 1860(5): 1008-1014, 2018 May.
Article in English | MEDLINE | ID: mdl-29357287

ABSTRACT

Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.


Subject(s)
Ceramides/metabolism , Lipid Bilayers/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Ceramides/chemistry , Fluorescence Resonance Energy Transfer , Humans , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Microscopy, Atomic Force , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Proto-Oncogene Proteins p21(ras)/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
11.
Br J Pharmacol ; 175(5): 830-839, 2018 03.
Article in English | MEDLINE | ID: mdl-29247460

ABSTRACT

BACKGROUND AND PURPOSE: (-)-Englerin A (EA) is a potent cytotoxic agent against renal carcinoma cells. It achieves its effects by activation of transient receptor potential canonical (TRPC)4/TRPC1 heteromeric channels. It is also an agonist at channels formed by the related protein, TRPC5. Here, we sought an EA analogue, which might enable a better understanding of these effects of EA. EXPERIMENTAL APPROACH: An EA analogue, A54, was synthesized by chemical elaboration of EA. The effects of EA and A54 on the activity of human TRPC4 or TRPC5 channels overexpressed on A498 and HEK 293 cells were investigated, firstly, by measuring intracellular Ca2+ and, secondly, current using whole-cell patch clamp recordings. KEY RESULTS: A54 had weak or no agonist activity at endogenous TRPC4/TRPC1 channels in A498 cells or TRPC4 or TRPC5 homomeric channels overexpressed in HEK 293 cells. A54 strongly inhibited EA-mediated activation of TRPC4/TRPC1 or TRPC5 and weakly inhibited activation of TRPC4. Studies of TRPC5 showed that A54 shifted the EA concentration-response curve to the right without changing its slope, consistent with competitive antagonism. In contrast, Gd3+ -activated TRPC5 or sphingosine-1-phosphate-activated TRPC4 channels were not inhibited but potentiated by A54. A54 did not activate TRPC3 channels or affect the activation of these channels by the agonist 1-oleoyl-2-acetyl-sn-glycerol. CONCLUSIONS AND IMPLICATIONS: This study has revealed a new tool compound for EA and TRPC1/4/5 channel research, which could be useful for characterizing endogenous TRPC1/4/5 channels and understanding EA-binding sites and their physiological relevance.


Subject(s)
Membrane Potentials/physiology , Sesquiterpenes, Guaiane/antagonists & inhibitors , TRPC Cation Channels/physiology , Calcium/metabolism , Cell Line, Tumor , Cells, Cultured , Diglycerides/pharmacology , Drug Synergism , Gadolinium/pharmacology , Humans , Lysophospholipids/pharmacology , Sesquiterpenes, Guaiane/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
12.
Sci Rep ; 7(1): 16988, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29209034

ABSTRACT

The sesquiterpene (-)Englerin A (EA) is an organic compound from the plant Phyllanthus engleri which acts via heteromeric TRPC4/C1 channels to cause cytotoxicity in some types of cancer cell but not normal cells. Here we identified selective cytotoxicity of EA in human synovial sarcoma cells (SW982 cells) and investigated the mechanism. EA induced cation channel current (Icat) in SW982 cells with biophysical characteristics of heteromeric TRPC4/C1 channels. Inhibitors of homomeric TRPC4 channels were weak inhibitors of the Icat and EA-induced cytotoxicity whereas a potent inhibitor of TRPC4/C1 channels (Pico145) strongly inhibited Icat and cytotoxicity. Depletion of TRPC1 converted Icat into a current with biophysical and pharmacological properties of homomeric TRPC4 channels and depletion of TRPC1 or TRPC4 suppressed the cytotoxicity of EA. A Na+/K+-ATPase inhibitor (ouabain) potentiated EA-induced cytotoxicity and direct Na+ loading by gramicidin-A caused Pico145-resistant cytotoxicity in the absence of EA. We conclude that EA has a potent cytotoxic effect on human synovial sarcoma cells which is mediated by heteromeric TRPC4/C1 channels and Na+ loading.


Subject(s)
Apoptosis/drug effects , Sarcoma, Synovial/pathology , Sesquiterpenes, Guaiane/pharmacology , Sodium/metabolism , TRPC Cation Channels/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Humans , Ion Transport , Sarcoma, Synovial/drug therapy , Sarcoma, Synovial/metabolism , Tumor Cells, Cultured
13.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28961375

ABSTRACT

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Triazines/therapeutic use , Animals , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Cyclin-Dependent Kinase 9/metabolism , Half-Life , HeLa Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Nude , Molecular Conformation , Molecular Docking Simulation , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Protein Structure, Tertiary , Rats , Rats, Nude , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/toxicity , Transplantation, Heterologous , Triazines/chemistry , Triazines/toxicity
14.
Biochemistry ; 56(30): 3972-3982, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28681606

ABSTRACT

Proteins typically interact with multiple binding partners, and often different parts of their surfaces are employed to establish these protein-protein interactions (PPIs). Members of the class of 14-3-3 adapter proteins bind to several hundred other proteins in the cell. Multiple small molecules for the modulation of 14-3-3 PPIs have been disclosed; however, they all target the conserved phosphopeptide binding channel, so that selectivity is difficult to achieve. Here we report on the discovery of two individual secondary binding sites that have been identified by combining nuclear magnetic resonance-based fragment screening and X-ray crystallography. The two pockets that these fragments occupy are part of at least three physiologically relevant and structurally characterized 14-3-3 PPI interfaces, including those with serotonin N-acetyltransferase and plant transcription factor FT. In addition, the high degree of conservation of the two sites implies their relevance for 14-3-3 PPIs. This first identification of secondary sites on 14-3-3 proteins bound by small molecule ligands might facilitate the development of new chemical tool compounds for more selective PPI modulation.


Subject(s)
14-3-3 Proteins/metabolism , Biomarkers, Tumor/metabolism , Exoribonucleases/metabolism , Models, Molecular , Transcription Factors/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Acyltransferases , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Conserved Sequence , Crystallography, X-Ray , Exoribonucleases/chemistry , Exoribonucleases/genetics , Gene Deletion , Humans , Kinetics , Ligands , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Library , Phosphorylation , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
15.
J Biol Chem ; 292(20): 8158-8173, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28325835

ABSTRACT

The concentration of free cytosolic Ca2+ and the voltage across the plasma membrane are major determinants of cell function. Ca2+-permeable non-selective cationic channels are known to regulate these parameters, but understanding of these channels remains inadequate. Here we focus on transient receptor potential canonical 4 and 5 proteins (TRPC4 and TRPC5), which assemble as homomers or heteromerize with TRPC1 to form Ca2+-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested, including in epilepsy, innate fear, pain, and cardiac remodeling, but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools that are high-quality, reliable, easy to use, and readily accessible for all investigators. Here, through chemical synthesis and studies of native and overexpressed channels by Ca2+ and patch-clamp assays, we describe compound 31, a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pm, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8, and store-operated Ca2+ entry mediated by Orai1. These findings suggest identification of an important experimental tool compound, which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145.


Subject(s)
Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Calcium/metabolism , HEK293 Cells , Humans , ORAI1 Protein/antagonists & inhibitors , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
16.
Chemistry ; 23(25): 6083-6093, 2017 May 02.
Article in English | MEDLINE | ID: mdl-27809361

ABSTRACT

The K-Ras GTPase is a major target in anticancer drug discovery. However, direct interference with signaling by K-Ras has not led to clinically useful drugs yet. Correct localization and signaling by farnesylated K-Ras is regulated by the prenyl binding protein PDEδ. Interfering with binding of PDEδ to K-Ras by means of small molecules provides a novel opportunity to suppress oncogenic signaling. Here we describe the identification and structure-guided development of novel K-Ras-PDEδ inhibitor chemotypes based on pyrrolopyridazinones and pyrazolopyridazinones that bind to the farnesyl binding pocket of PDEδ with low nanomolar affinity. We delineate the structure-property relationship and in vivo pharmacokinetic (PK) and toxicokinetic (Tox) studies for pyrazolopyridazinone-based K-Ras-PDEδ inhibitors. These findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic Ras.

17.
Nat Commun ; 7: 11360, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27094677

ABSTRACT

The prenyl-binding protein PDEδ is crucial for the plasma membrane localization of prenylated Ras. Recently, we have reported that the small-molecule Deltarasin binds to the prenyl-binding pocket of PDEδ, and impairs Ras enrichment at the plasma membrane, thereby affecting the proliferation of KRas-dependent human pancreatic ductal adenocarcinoma cell lines. Here, using structure-based compound design, we have now identified pyrazolopyridazinones as a novel, unrelated chemotype that binds to the prenyl-binding pocket of PDEδ with high affinity, thereby displacing prenylated Ras proteins in cells. Our results show that the new PDEδ inhibitor, named Deltazinone 1, is highly selective, exhibits less unspecific cytotoxicity than the previously reported Deltarasin and demonstrates a high correlation with the phenotypic effect of PDEδ knockdown in a set of human pancreatic cancer cell lines.


Subject(s)
Antineoplastic Agents/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic , Phosphodiesterase Inhibitors/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Pyrazines/chemistry , Pyrazoles/chemistry , Small Molecule Libraries/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression , Humans , Molecular Docking Simulation , Pancreatic Ducts/drug effects , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology
19.
Future Med Chem ; 7(14): 1879-89, 2015.
Article in English | MEDLINE | ID: mdl-26420644

ABSTRACT

While industry makes cuts to early drug discovery research, the demand for innovation in the pursuit of novel medicines continues to grow. Who should fill this gap? Academia clearly is a rich source of innovation but how can new basic research concepts find their way into industrial application? A new paradigm for early drug discovery involves professional translational research centers, which function as facilitators and translators at the academia-industry interface, harnessing the strengths of both worlds and leveraging the high innovation potential of academia by using the robustness and efficiency of industry. In this article, the authors discuss the set-up and essential requirements for the successful translation of new drug concepts.


Subject(s)
Drug Discovery , Translational Research, Biomedical/economics , Intellectual Property , Inventions , Public-Private Sector Partnerships/economics
20.
ChemMedChem ; 10(7): 1133-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25924977

ABSTRACT

Many recent articles have dealt with the future challenges in medicinal chemistry. Here, I discuss my concerns over the future of medicinal chemists, who have to be skilled and knowledgeable in many different fields, particularly in the context of the ever-growing requirements, the request for even broader diversification, and the substantial structural change in industrial drug discovery. In my opinion, we have to do the following in order to ensure sustained high quality and achievements: 1) to focus on superior design without excluding complex structures a priori; 2) to proactively shape the future of our discipline; 3) to discuss specialization; 4) to intensify exchange between academia and industry; and 5) to remodel education of the next generation of medicinal chemists. By providing my opinion on these aspects, I hope to stimulate discussions and change within the community.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Industry/trends , Chemistry, Pharmaceutical/education , Drug Design , Drug Industry/education , Public-Private Sector Partnerships , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL
...