Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 101: 7-14, 2017 08.
Article in English | MEDLINE | ID: mdl-28623148

ABSTRACT

The juvenile hormone (JH) of insects triggers physiological changes related to reproduction in adults of both sexes. Methoprene is a sesquiterpene with some effects that are analogous to those of JH. Treatments with methoprene accelerate sexual maturation in males of the South American fruit fly Anastrepha fraterculus, giving young males a mating advantage over non-treated males of the same age. Here, we evaluated the effects of methoprene treatment on A. fraterculus males after the sexual maturation phase and tested whether this compound provides a long-term mating advantage. Moreover, we took the first step to unravel the mechanisms that underlie male sexual enhancement. We treated males 1day or 8days after adult emergence and compared mate choice between recently matured (young) females and females that had been mature for ca. 10days (aged females). We also addressed methoprene treatment effects on male sexual signalling. We found that methoprene treatment enhanced male sexual competitiveness even after the sexual maturation phase, and the effect did not decrease until males were older than 20days. However, when methoprene treatment was carried out close to sexual maturity, the mating enhancement was no longer observed, suggesting a non-immediate effect and excluding the possibility that methoprene acts as a pheromonal compound. Young and aged females tended to mate more frequently with treated-males. This might indicate that in a context of sexual selection, the potential benefits associated with reproductive success would be similar for females of both ages. Treated males released larger amounts of pheromonal compounds than non-treated males, but their courtship behaviour was not altered to the same extent, suggesting that methoprene treatment may accelerate differently the components of male courtship. We discuss potential benefits of using methoprene to increase the efficiency of the sterile insect technique, which is an environmentally safe method to control this important South American fruit pest.


Subject(s)
Juvenile Hormones/pharmacology , Methoprene/pharmacology , Sexual Behavior, Animal/drug effects , Sexual Maturation , Tephritidae/drug effects , Tephritidae/physiology , Animals , Female , Male
2.
Bull Entomol Res ; 107(6): 756-767, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28382881

ABSTRACT

The optimal use of available host by parasitoid insects should be favoured by natural selection. For solitary parasitoids, superparasitism (i.e. the egg-laying of several eggs/host) may represent a detrimental phenomenon both in a biological and an applied sense, but under certain circumstances it may be adaptive. Here, we studied the effects of increasing levels of superparasitism (LSPs, number of parasitoid larvae/host) on fitness-related parameters of the immature and adult stages of Diachasmimorpha longicaudata, a solitary endoparasitoid parasitizing Ceratitis capitata. We investigated the moment when supernumerary parasitoid larvae are eliminated and the effects produced by this process, together with its repercussion on female fecundity, parasitism rate, sex ratio, adult survival, flight ability and body size. Complete elimination of competitors occurred soon after larval hatching, before reaching the second larval stage. Elimination process took longer at higher LSPs, although a normal developmental (egg-adult) time was achieved. For LSPs 1, 2, 3 and 5 the effects on parasitoid emergence were mild, but LSP 10 led to the death of all developing parasitoids. Aside from this, to develop in superparasitized hosts did not significantly affect any of the evaluated parameters, and only a female-biased sex ratio was observed at higher LSPs. However, the effects of superparasitism on the adults may have a different outcome under more variable conditions in the field, once they are released for biological control purposes.


Subject(s)
Ceratitis capitata/parasitology , Host-Parasite Interactions , Wasps/growth & development , Animals , Body Size , Female , Fertility , Flight, Animal , Male , Sex Ratio
3.
J Invertebr Pathol ; 110(1): 1-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22326392

ABSTRACT

The boll weevil (Anthonomus grandis) is the main pest of cotton in the Americas. The aim of this work was to evaluate isolates of the entomopathogenic fungi Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato virulent against A. grandis. Screening was performed to evaluate the pathogenicity of 28 isolates of M. anisopliae s.l. and 66 isolates of B. bassiana s.l. against boll weevil adults. To select the isolates, LC(50) values of the most virulent isolates were calculated, and compatibility between the fungi and insecticides was studied. In addition, the effects of these isolates on the feeding behavior of the adults were evaluated. Isolates Ma 50 and Ma 20 were the most virulent against A. grandis and their LC(50) values were 1.13×10(7) and 1.20×10(7) conidia/ml, respectively. In addition, these isolates were compatible with pyrethroid insecticides, but none with endosulfan. On the other hand, infected females reduced the damage caused by feeding on the cotton squares and their weight gain. This shows that entomopathogenic fungi cause mortality in the insects, but also these fungi could influence the feeding behavior of the females. In summary, these results indicate the possibility of the use of M. anisopliae s.l. as a microbiological control agent against boll weevils. Also, this species could be included in an Integrated Pest Management program.


Subject(s)
Beauveria/pathogenicity , Metarhizium/pathogenicity , Pest Control, Biological/methods , Weevils/microbiology , Animals , Argentina , Beauveria/isolation & purification , Feeding Behavior/physiology , Female , Metarhizium/isolation & purification , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...