Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5247, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640701

ABSTRACT

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Subject(s)
Microglia , Neurodegenerative Diseases , Animals , Mice , Neurodegenerative Diseases/genetics , Macrophages , Myeloid Cells , Genetic Drift
2.
J Neuroinflammation ; 20(1): 179, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37516868

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS: To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS: TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS: This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macaca mulatta , Neuroinflammatory Diseases , COVID-19/diagnostic imaging , Endothelial Cells , Post-Acute COVID-19 Syndrome , Positron-Emission Tomography , Inflammation/diagnostic imaging , Collagen Type IV , Receptors, GABA
3.
Nat Neurosci ; 25(8): 1104-1112, 2022 08.
Article in English | MEDLINE | ID: mdl-35915177

ABSTRACT

To date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia. Cell-type-level eQTLs affected more constrained genes and had larger effect sizes than tissue-level eQTLs. Integration of brain cell type eQTLs with genome-wide association studies (GWAS) revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene co-localized in a single cell type, providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among brain cell types and reveal potential mechanisms by which disease risk genes influence brain disorders.


Subject(s)
Genome-Wide Association Study , Nervous System Diseases , Brain , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
4.
Clin Exp Immunol ; 209(2): 236-246, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35778909

ABSTRACT

Optic neuritis, a primary clinical manifestation commonly observed in multiple sclerosis (MS), is a major factor leading to permanent loss of vision. Despite decreased vision (optic neuritis), diplopia, and nystagmus, the immunopathology of the optic nerve in MS is unclear. Here, we have characterized the optic nerve pathology in a large cohort of MS cases (n = 154), focusing on the immune responses in a sub-cohort of MS (n = 30) and control (n = 6) cases. Immunohistochemistry was used to characterize the myeloid (HLA-DR, CD68, Iba1, TMEM119, and P2RY12) and adaptive immune cells (CD4, CD8, and CD138) in the parenchyma, perivascular spaces, and meninges in optic nerve tissues from MS and control cases. Of the 154 MS cases, 122 (79%) reported visual problems; of which, 99 (81%) optic nerves showed evidence of damage. Of the 31 cases with no visual disturbances, 19 (61%) showed evidence of pathology. A pattern of myeloid cell activity and demyelination in the optic nerve was similar to white matter lesions in the brain and spinal cord. In the optic nerves, adaptive immune cells were more abundant in the meninges close to active and chronic active lesions, and significantly higher compared with the parenchyma. Similar to brain tissues in this Dutch cohort, B-cell follicles in the meninges were absent. Our study reveals that optic nerve pathology is a frequent event in MS and may occur in the absence of clinical symptoms.


Subject(s)
Multiple Sclerosis , Optic Neuritis , Brain/pathology , Humans , Multiple Sclerosis/pathology , Optic Nerve , Optic Neuritis/diagnosis , Optic Neuritis/pathology , Spinal Cord/pathology
5.
EMBO Rep ; 23(7): e54499, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35593064

ABSTRACT

Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using ß-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.


Subject(s)
Neuroinflammatory Diseases , Topoisomerase I Inhibitors , Animals , DNA , Macrophages , Mice , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology
6.
Glia ; 70(6): 1170-1190, 2022 06.
Article in English | MEDLINE | ID: mdl-35246882

ABSTRACT

Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Microglia , Animals , Central Nervous System , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/metabolism , Macrophages/metabolism , Mice , Mice, Transgenic , Microglia/metabolism
7.
Acta Neuropathol Commun ; 10(1): 8, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35090578

ABSTRACT

Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.


Subject(s)
Brain/metabolism , Demyelinating Diseases/metabolism , Macrophages/metabolism , Multiple Sclerosis/metabolism , Transcriptome , White Matter/metabolism , Animals , Brain/pathology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Female , Humans , Macrophages/pathology , Male , Mice , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , White Matter/pathology
8.
Acta Neuropathol ; 143(2): 125-141, 2022 02.
Article in English | MEDLINE | ID: mdl-34878590

ABSTRACT

Microglia, the resident myeloid cells in the central nervous system (CNS) play critical roles in shaping the brain during development, responding to invading pathogens, and clearing tissue debris or aberrant protein aggregations during ageing and neurodegeneration. The original concept that like macrophages, microglia are either damaging (pro-inflammatory) or regenerative (anti-inflammatory) has been updated to a kaleidoscope view of microglia phenotypes reflecting their wide-ranging roles in maintaining homeostasis in the CNS and, their contribution to CNS diseases, as well as aiding repair. The use of new technologies including single cell/nucleus RNA sequencing has led to the identification of many novel microglia states, allowing for a better understanding of their complexity and distinguishing regional variations in the CNS. This has also revealed differences between species and diseases, and between microglia and other myeloid cells in the CNS. However, most of the data on microglia heterogeneity have been generated on cells isolated from the cortex or whole brain, whereas white matter changes and differences between white and grey matter have been relatively understudied. Considering the importance of microglia in regulating white matter health, we provide a brief update on the current knowledge of microglia heterogeneity in the white matter, how microglia are important for the development of the CNS, and how microglial ageing affects CNS white matter homeostasis. We discuss how microglia are intricately linked to the classical white matter diseases such as multiple sclerosis and genetic white matter diseases, and their putative roles in neurodegenerative diseases in which white matter is also affected. Understanding the wide variety of microglial functions in the white matter may provide the basis for microglial targeted therapies for CNS diseases.


Subject(s)
Microglia/cytology , White Matter/cytology , Animals , Central Nervous System Diseases/pathology , Humans
9.
Clin Exp Immunol ; 206(3): 248-250, 2021 12.
Article in English | MEDLINE | ID: mdl-34726266

ABSTRACT

Innate and adaptive immune responses in the central nervous system (CNS) play critical roles in the pathogenesis of neurological diseases. In the first of a two-part special issue, leading researchers discuss how imaging modalities are used to monitor immune responses in several neurodegenerative diseases and glioblastoma and brain metastases. While comparative studies in humans between imaging and pathology are biased towards the end stage of disease, animal models can inform regarding how immune responses change with disease progression and as a result of treatment regimens. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are frequently used to image disease progression, and the articles indicate how one or more of these modalities have been applied to specific neuroimmune diseases. In addition, advanced microscopical imaging using two-dimensional photon microscopy and in vitro live cell imaging have also been applied to animal models. In this special issue (Parts 1 and 2), as well as the imaging modalities mentioned, several articles discuss biomarkers of disease and microscopical studies that have enabled characterization of immune responses. Future developments of imaging modalities should enable tracking of specific subsets of immune cells during disease allowing longitudinal monitoring of immune responses. These new approaches will be critical to more effectively monitor and thus target specific cell subsets for therapeutic interventions which may be applicable to a range of neurological diseases.


Subject(s)
Adaptive Immunity/immunology , Central Nervous System/diagnostic imaging , Glioblastoma/diagnostic imaging , Immunity, Innate/immunology , Neurodegenerative Diseases/diagnostic imaging , Neuroinflammatory Diseases/diagnostic imaging , Biomarkers/analysis , Disease Progression , Glioblastoma/pathology , Humans , Magnetic Resonance Imaging , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Positron-Emission Tomography , Tomography, Optical Coherence
10.
Clin Exp Immunol ; 206(3): 301-313, 2021 12.
Article in English | MEDLINE | ID: mdl-34510431

ABSTRACT

Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Positron-Emission Tomography/methods , Amyotrophic Lateral Sclerosis/immunology , Animals , Brain/pathology , Disease Models, Animal , Disease Progression , Humans , Inflammation/pathology , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology
11.
Neurobiol Stress ; 15: 100379, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34430678

ABSTRACT

Early-life stress (ES) increases the risk for psychopathology and cognitive decline later in life. Because the neurobiological substrates affected by ES (i.e., cognition, neuroplasticity, and neuroinflammation) are also altered in aging, we set out to investigate if and how ES in the first week of life affects these domains at an advanced age, and how ES modulates the aging trajectory per se. We subjected C57BL/6j mice to an established ES mouse model from postnatal days 2-9. Mice underwent behavioral testing at 19 months of age and were sacrificed at 20 months to investigate their physiology, hippocampal neuroplasticity, neuroinflammation, and telomere length. ES mice, as a group, did not perform differently from controls in the open field or Morris water maze (MWM). Hippocampal neurogenesis and synaptic marker gene expression were not different in ES mice at this age. While we find aging-associated alterations to neuroinflammatory gene expression and telomere length, these were unaffected by ES. When integrating the current data with those from our previously reported 4- and 10-month-old cohorts, we conclude that ES leads to a 'premature' shift in the aging trajectory, consisting of early changes that do not further worsen at the advanced age of 20 months. This could be explained e.g. by a 'floor' effect in ES-induced impairments, and/or age-induced impairments in control mice. Future studies should help understand how exactly ES affects the overall aging trajectory.

12.
Glia ; 69(10): 2447-2458, 2021 10.
Article in English | MEDLINE | ID: mdl-34145928

ABSTRACT

To monitor innate immune responses in the CNS, the 18 kDa Translocator protein (TSPO) is a frequently used target for PET imaging. The frequent assumption that increased TSPO expression in the human CNS reflects pro-inflammatory activation of microglia has been extrapolated from rodent studies. However, TSPO expression does not increase in activated human microglia in vitro. Studies of multiple sclerosis (MS) lesions reveal that TSPO is not restricted to pro-inflammatory microglia/macrophages, but also present in homeostatic or reparative microglia. Here, we investigated quantitative relationships between TSPO expression and microglia/macrophage phenotypes in white matter and lesions of brains with MS pathology. In white matter from brains with no disease pathology, normal appearing white matter (NAWM), active MS lesions and chronic active lesion rims, over 95% of TSPO+ cells are microglia/macrophages. Homeostatic microglial markers in NAWM and control tissue are lost/reduced in active lesions and chronic active lesion rims, reflecting cell activation. Nevertheless, pixel analysis of TSPO+ cells (n = 12,225) revealed that TSPO expression per cell is no higher in active lesions and chronic active lesion rims (where myeloid cells are activated) relative to NAWM and control. This data suggests that whilst almost all the TSPO signal in active lesions, chronic active lesion rims, NAWM and control is associated with microglia/macrophages, their TSPO expression predominantly reflects cell density and not activation phenotype. This finding has implications for the interpretation of TSPO PET signal in MS and other CNS diseases, and further demonstrates the limitation of extrapolating TSPO biology from rodents to humans.


Subject(s)
Multiple Sclerosis , White Matter , Brain/metabolism , Humans , Macrophages/metabolism , Microglia/metabolism , Multiple Sclerosis/metabolism , Positron-Emission Tomography , Receptors, GABA/genetics , Receptors, GABA/metabolism , White Matter/diagnostic imaging , White Matter/metabolism
13.
Eur J Nucl Med Mol Imaging ; 49(1): 146-163, 2021 12.
Article in English | MEDLINE | ID: mdl-33433698

ABSTRACT

The 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.


Subject(s)
Receptors, GABA , Tomography, X-Ray Computed , Animals , Brain/diagnostic imaging , Brain/metabolism , Humans , Microglia/metabolism , Positron-Emission Tomography , Receptors, GABA/genetics , Receptors, GABA/metabolism
14.
J Pathol ; 253(2): 133-147, 2021 02.
Article in English | MEDLINE | ID: mdl-33135781

ABSTRACT

Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic-metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy-modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Autophagy , Leukoencephalopathies/pathology , Multiple Sclerosis/pathology , Cell Death , Cell Survival , Demyelinating Diseases , Humans , Leukoencephalopathies/cerebrospinal fluid , Leukoencephalopathies/therapy , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/therapy , Oligodendroglia/pathology , United Kingdom , White Matter/pathology
15.
Sci Immunol ; 5(52)2020 10 16.
Article in English | MEDLINE | ID: mdl-33067381

ABSTRACT

Multiple sclerosis (MS) is a leading cause of incurable progressive disability in young adults caused by inflammation and neurodegeneration in the central nervous system (CNS). The capacity of microglia to clear tissue debris is essential for maintaining and restoring CNS homeostasis. This capacity diminishes with age, and age strongly associates with MS disease progression, although the underlying mechanisms are still largely elusive. Here, we demonstrate that the recovery from CNS inflammation in a murine model of MS is dependent on the ability of microglia to clear tissue debris. Microglia-specific deletion of the autophagy regulator Atg7, but not the canonical macroautophagy protein Ulk1, led to increased intracellular accumulation of phagocytosed myelin and progressive MS-like disease. This impairment correlated with a microglial phenotype previously associated with neurodegenerative pathologies. Moreover, Atg7-deficient microglia showed notable transcriptional and functional similarities to microglia from aged wild-type mice that were also unable to clear myelin and recover from disease. In contrast, induction of autophagy in aged mice using the disaccharide trehalose found in plants and fungi led to functional myelin clearance and disease remission. Our results demonstrate that a noncanonical form of autophagy in microglia is responsible for myelin degradation and clearance leading to recovery from MS-like disease and that boosting this process has a therapeutic potential for age-related neuroinflammatory conditions.


Subject(s)
Autophagy-Related Protein 7/deficiency , Encephalomyelitis, Autoimmune, Experimental/immunology , Microglia/immunology , Multiple Sclerosis/immunology , Phagocytosis/immunology , Animals , Autophagy/immunology , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein-1 Homolog/deficiency , Autophagy-Related Protein-1 Homolog/genetics , Brain/cytology , Brain/immunology , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Knockout , Microglia/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Primary Cell Culture , Spinal Cord/cytology , Spinal Cord/immunology , Spinal Cord/pathology
16.
Ann Neurol ; 88(3): 619-625, 2020 09.
Article in English | MEDLINE | ID: mdl-32608018

ABSTRACT

Disability in multiple sclerosis (MS) is considered primarily a result of axonal loss. However, correlation with spinal cord cross-sectional area-a predictor of disability-is poor, questioning the unique role of axonal loss. We investigated the degree of synaptic loss in postmortem spinal cords (18 chronic MS, 8 healthy controls) using immunohistochemistry for synaptophysin and synapsin. Substantial (58-96%) loss of synapses throughout the spinal cord was detected, along with moderate (47%) loss of anterior horn neurons, notably in demyelinating MS lesions. We conclude that synaptic loss is significant in chronic MS, likely contributing to disability accrual. ANN NEUROL 2020;88:619-625.


Subject(s)
Multiple Sclerosis/pathology , Spinal Cord/pathology , Synapses/pathology , Aged , Autopsy , Female , Humans , Male
17.
Cells ; 9(3)2020 03 03.
Article in English | MEDLINE | ID: mdl-32138223

ABSTRACT

Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.


Subject(s)
Astrocytes/metabolism , Cell Communication/physiology , Central Nervous System/metabolism , Oligodendroglia/metabolism , Humans
18.
Brain ; 142(11): 3440-3455, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31578541

ABSTRACT

The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.


Subject(s)
Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics , Receptors, GABA/genetics , Acetamides , Aged , Aged, 80 and over , Astrocytes/pathology , Autopsy , Female , Genotype , Homeostasis , Humans , Isoquinolines , Lymphocytes/pathology , Male , Microglia/pathology , Middle Aged , Multiple Sclerosis/pathology , Positron-Emission Tomography , Pyridines , Radiopharmaceuticals
19.
Ann Clin Transl Neurol ; 6(8): 1362-1372, 2019 08.
Article in English | MEDLINE | ID: mdl-31402611

ABSTRACT

OBJECTIVE: Despite progress in treating relapsing multiple sclerosis (MS), effective inhibition of nonrelapsing progressive MS is an urgent, unmet, clinical need. Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE), provide valuable tools to examine the mechanisms contributing to disease and may be important for developing rational therapeutic approaches for treatment of progressive MS. It has been suggested that myelin oligodendrocyte glycoprotein (MOG) peptide residues 35-55 (MOG35-55 )-induced EAE in nonobese diabetic (NOD) mice resembles secondary progressive MS. The objective was to determine whether the published data merits such claims. METHODS: Induction and monitoring of EAE in NOD mice and literature review. RESULTS: It is evident that the NOD mouse model lacks validity as a progressive MS model as the individual course seems to be an asynchronous, relapsing-remitting neurodegenerative disease, characterized by increasingly poor recovery from relapse. The seemingly progressive course seen in group means of clinical score is an artifact of data handling and interpretation. INTERPRETATION: Although MOG35-55 -induced EAE in NOD mice may provide some clues about approaches to block neurodegeneration associated with the inflammatory penumbra as lesions form, it should not be used to justify trials in people with nonactive, progressive MS. This adds further support to the view that drug studies in animals should universally adopt transparent raw data deposition as part of the publication process, such that claims can adequately be interrogated. This transparency is important if animal-based science is to remain a credible part of translational research in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/chemically induced , Multiple Sclerosis, Chronic Progressive/drug therapy , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Animals , Disease Models, Animal , Mice , Mice, Inbred NOD , Multiple Sclerosis/drug therapy , Myelin Proteins , Neurodegenerative Diseases/drug therapy , Peptides/pharmacology
20.
Immunology ; 154(2): 204-219, 2018 06.
Article in English | MEDLINE | ID: mdl-29513402

ABSTRACT

Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.


Subject(s)
Inflammation/complications , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Adaptive Immunity , Aging/immunology , Aging/metabolism , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Environment , Humans , Immune Privilege , Immunity, Innate , Immunotherapy , Life Style , Microbiota , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/therapy , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...