Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 6: e5141, 2018.
Article in English | MEDLINE | ID: mdl-30002974

ABSTRACT

Streams and their surrounding riparian habitats are linked by reciprocal exchanges of insect prey essential to both aquatic and terrestrial consumers. Aquatic insects comprise a large proportion of total prey in riparian habitats and are opportunistically exploited by terrestrial insectivores; however, several species of songbirds are known to preferentially target aquatic prey via specialized foraging strategies. For these songbirds, reduced availability of aquatic insects via stream acidification may result in compensatory changes in provisioning during the nesting period, thereby influencing both adult and nestling diet composition. In this study, we used DNA metabarcoding to test the hypothesis that an obligate riparian Neotropical migratory songbird, the Louisiana Waterthrush (Parkesia motacilla), expands its diet to compensate for the loss of preferred aquatic prey taxa (primarily pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera) as a result of stream acidification. Our results revealed that both adult and nestling waterthrush exhibited an increase in dietary richness and niche breadth resulting from the consumption of terrestrial prey taxa in acidified riparian habitats. In contrast, compensatory dietary shifts were not observed in syntopic Neotropical migrant species known to primarily provision terrestrial prey taxa. In addition to providing support for our hypothesis that waterthrush compensate for stream acidification and aquatic prey limitations by expanding their diet, our findings highlight the vulnerability of Louisiana Waterthrush to anthropogenic disturbances that compromise stream quality or reduce the availability of pollution-sensitive aquatic insects.

2.
Oecologia ; 187(1): 85-98, 2018 05.
Article in English | MEDLINE | ID: mdl-29616401

ABSTRACT

Riparian habitats are characterized by substantial flows of emergent aquatic insects that cross the stream-forest interface and provide an important source of prey for insectivorous birds. The increased availability of prey arising from aquatic subsidies attracts high densities of Neotropical migratory songbirds that are thought to exploit emergent aquatic insects as a nestling food resource; however, the prey preferences and diets of birds in these communities are only broadly understood. In this study, we utilized DNA metabarcoding to investigate the extent to which three syntopic species of migratory songbirds-Acadian Flycatcher, Louisiana Waterthrush, and Wood Thrush-breeding in Appalachian riparian habitats (Pennsylvania, USA) exploit and partition aquatic prey subsidies as a nestling food resource. Despite substantial differences in adult foraging strategies, nearly every nestling in this study consumed aquatic taxa, suggesting that aquatic subsidies are an important prey resource for Neotropical migrants nesting in riparian habitats. While our results revealed significant interspecific dietary niche divergence, the diets of Acadian Flycatcher and Wood Thrush nestlings were strikingly similar and exhibited significantly more overlap than expected. These results suggest that the dietary niches of Neotropical migrants with divergent foraging strategies may converge due to the opportunistic provisioning of non-limiting prey resources in riparian habitats. In addition to providing the first application of DNA metabarcoding to investigate diet in a community of Neotropical migrants, this study emphasizes the importance of aquatic subsidies in supporting breeding songbirds and improves our understanding of how anthropogenic disturbances to riparian habitats may negatively impact long-term avian conservation.


Subject(s)
DNA Barcoding, Taxonomic , Songbirds , Animals , Appalachian Region , DNA , Ecosystem , Feces , Pennsylvania
3.
Conserv Biol ; 27(5): 1107-16, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23678968

ABSTRACT

Externally feeding phytophagous insect larvae (i.e., caterpillars, here, larval Lepidoptera and sawflies, Hymenoptera: Symphyta) are important canopy herbivores and prey resources in temperate deciduous forests. However, composition of forest trees has changed dramatically in the eastern United States since 1900. In particular, browsing by high densities of white-tailed deer (Odocoileus virginianus) has resulted in forests dominated by browse-tolerant species, such as black cherry (Prunus serotina), and greatly reduced relative abundance of other tree species, notably pin cherry (Prunus pensylvanica) and birches (Betula spp.). To quantify effects of these changes on caterpillars, we sampled caterpillars from 960 branch tips of the 8 tree species that comprise 95% of trees in Allegheny hardwood forests: red maple (Acer rubrum), striped maple (Acer pensylvanicum), sugar maple (Acer saccharum), sweet birch (Betula lenta), yellow birch (Betula allegheniensis), American beech (Fagus grandifolia), black cherry, and pin cherry. We collected 547 caterpillar specimens that belonged to 66 Lepidoptera and 10 Hymenoptera species. Caterpillar density, species richness, and community composition differed significantly among tree species sampled. Pin cherry, nearly eliminated at high deer density, had the highest density and diversity of caterpillars. Pin cherry shared a common caterpillar community with black cherry, which was distinct from those of other tree hosts. As high deer density continues to replace diverse forests of cherries, maples, birches, and beech with monodominant stands of black cherry, up to 66% of caterpillar species may be eliminated. Hence, deer-induced changes in forest vegetation are likely to ricochet back up forest food webs and therefore negatively affect species that depend on caterpillars and moths for food and pollination.


Subject(s)
Biodiversity , Deer/physiology , Herbivory , Moths/physiology , Acer , Animals , Betula , Fagus , Food Chain , Larva/physiology , Moths/growth & development , Population Density , Population Dynamics , Prunus , Species Specificity
4.
Proc Biol Sci ; 278(1723): 3329-35, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21429923

ABSTRACT

Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.


Subject(s)
Characiformes/physiology , Ecosystem , Gastrointestinal Transit/physiology , Models, Biological , Rivers , Seed Dispersal/physiology , Algorithms , Animals , Computer Simulation , Peru , Telemetry
5.
Am Nat ; 165(3): 336-49, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15729664

ABSTRACT

Seed dispersal is an important determinant of vegetation composition. We present a mechanistic model of seed dispersal by wind that incorporates heterogeneous vegetation structure. Vegetation affects wind speeds, a primary determinant of dispersal distance. Existing models combine wind speed and fall velocity of seeds. We expand on them by allowing vegetation, and thus wind profiles, to vary along seed trajectories, making the model applicable to any wind-dispersed plant in any community. Using seed trap data on seeds dispersing from forests into adjacent sites of two distinct vegetation structures, we show that our model was unbiased and accurate, even though dispersal patterns differed greatly between the two structures. Our spatially heterogeneous model performed better than models that assumed homogeneous vegetation for the same system. Its sensitivity to vegetation structure and ability to predict seed arrival when vegetation structure was incorporated demonstrates the model's utility for providing realistic estimates of seed arrival in realistic landscapes. Thus, we begin to bridge mechanistic seed dispersal and forest dynamics models. We discuss the merits of our model for incorporation into forest simulators, applications where such incorporation has been or is likely to be especially fruitful, and future model refinements to increase understanding of seed dispersal by wind.


Subject(s)
Environment , Models, Biological , Seeds/physiology , Acer/embryology , Acer/physiology , Fraxinus/embryology , Fraxinus/physiology , Liquidambar/embryology , Liquidambar/physiology , Mississippi , Population Dynamics , Trees , Ulmus/embryology , Ulmus/physiology , Wind
SELECTION OF CITATIONS
SEARCH DETAIL