Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854026

ABSTRACT

A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.

2.
Evol Appl ; 17(6): e13693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828055

ABSTRACT

The adaptation of Anopheles malaria vectors to domestic settings is directly linked to their ability to feed on humans. The strength of this species-habitat association is unequal across the species within the genus, with the major vectors being particularly dependent on humans. However, our understanding of how blood-feeding behavior interacts with and adapts to environmental settings, including the presence of humans, remains limited. Using a field-based approach, we first investigated Anopheles community structure and feeding behavior patterns in domestic and sylvatic settings in La Lopé National Park in Gabon, Central Africa. We characterized the preference indices using a dual-host choice sampling approach across mosquito species, habitats, and seasons. We then quantified the plastic biting behavior of mosquito species in each habitat. We collected individuals from 16 Anopheles species that exhibited significant differences in species composition and abundance between sylvatic and domestic settings. The host-seeking behavior also varied among the seven most abundant species. The general attractiveness to each host, human or animal, remained relatively constant for each species, but with significant variations between habitats across species. These variations, to more generalist and to more anthropophilic behavior, were related to seasonal changes and distance from the village, respectively. Finally, we pointed out that the host choice of major malaria vectors changed in the absence of humans, revealing a plastic feeding behavior of these species. This study highlights the effect of humans on Anopheles distribution and feeding evolution. The characterization of feeding behavior in wild and domestic settings provides opportunities to better understand the interplay between genetic determinants of host preference and ecological factors. Our findings suggest that protected areas may offer alternative thriving conditions to major malaria vectors.

3.
BMC Genomics ; 24(1): 408, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468834

ABSTRACT

BACKGROUND: The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS: We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS: These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.


Subject(s)
Hemiptera , Plant Viruses , Animals , Phylogeny , Africa , Asia
4.
PLoS One ; 15(5): e0232616, 2020.
Article in English | MEDLINE | ID: mdl-32379806

ABSTRACT

Bemisia tabaci (sensu latu) is a group of >40 highly cryptic whitefly species that are of global agricultural importance, both as crop pests and plant-virus vectors. Two devastating cassava diseases in East and Central Africa are spread by abundant populations of one of these species termed Sub-Saharan Africa 1 (SSA1). There is a substantive risk that these whitefly-borne pandemics will continue to spread westwards and disrupt cassava production for millions of smallholder farmers in West Africa. We report here, therefore, the first comprehensive survey of cassava B. tabaci in eastern Nigeria, a West African region likely to be the first affected by the arrival of these whitefly-borne pandemics. We found one haplotype comprising 32 individuals with 100% identical mtCO1 sequence to the East African SSA1 populations (previously termed SSA1-SG1) and 19 mtCO1 haplotypes of Sub-Saharan Africa 3 (SSA3), the latter being the most prevalent and widely distributed B. tabaci species in eastern Nigeria. A more divergent SSA1 mtCO1 sequence (previously termed SSA1-SG5) was also identified in the region, as were mtCO1 sequences identifying the presence of the MED ASL B. tabaci species and Bemisia afer. Although B. tabaci SSA1 was found in eastern Nigeria, they were not present in the high abundances associated with the cassava mosaic (CMD) and cassava brown streak disease (CBSD) pandemics of East and Central Africa. Also, no severe CMD or any CBSD symptoms were found in the region.


Subject(s)
Disease Vectors/classification , Hemiptera/classification , Plant Diseases , Animals , Haplotypes , Hemiptera/genetics , Hemiptera/pathogenicity , Manihot/growth & development , Nigeria , Phylogeny
5.
Plant Methods ; 14: 82, 2018.
Article in English | MEDLINE | ID: mdl-30250493

ABSTRACT

BACKGROUND: The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments. RESULTS: The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85-95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88-98%, irrespective of the feeding and crop environment. CONCLUSION: This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development.

SELECTION OF CITATIONS
SEARCH DETAIL
...