Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 13: 799306, 2022.
Article in English | MEDLINE | ID: mdl-35355994

ABSTRACT

Identifying the mechanism of naturally acquired immunity against Plasmodium falciparum malaria could contribute to the design of effective malaria vaccines. Using a recently developed multiplexed FluoroSpot assay, we assessed cross-sectional pre-existing memory B-cells (MBCs) and antibody responses against six well known P. falciparum antigens (MSP-119, MSP-2 (3D7), MSP-2 (FC27), MSP-3, AMA-1 and CSP) and measured their associations with previous infections and time to clinical malaria in the ensuing malaria season in Kenyan children. These children were under active weekly surveillance for malaria as part of a long-term longitudinal malaria immunology cohort study, where they are recruited from birth. After performing Cox regression analysis, we found that children with a breadth of three or more antigen-specific MBC or antibody responses at the baseline had a reduced risk for malaria in the ensuing P. falciparum transmission season. Specifically, MBC responses against AMA-1, MSP-2 (3D7) and MSP-3, as well as antibody responses to MSP-2 (3D7) and MSP-3 were prospectively associated with a reduced risk for malaria. The magnitude or breadth of MBC responses were however not correlated with the cumulative number of malaria episodes since birth. We conclude that increased breadth for merozoite antigen-specific MBC and antibody responses is associated with protection against malaria.


Subject(s)
Malaria , Plasmodium falciparum , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Child , Cohort Studies , Cross-Sectional Studies , Humans , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control
2.
Article in English | MEDLINE | ID: mdl-28883972

ABSTRACT

BACKGROUND: Salmonella has significant public health implications causing food borne and zoonotic diseases in humans. Treatment of infections due to Salmonella is becoming difficult due to emergence of drug resistant strains. There is therefore need to characterize the circulating non-typhoidal Salmonella (NTS) serovars in domestic animals and animal products in Kenya as well as determine their antibiotic resistance profiles. METHODS: A total of 740 fecal samples were collected from cows (n = 150), pigs (n = 182), chicken (n = 191) and chicken eggs (n = 217) from various markets and abattoirs in Nairobi. The prevalence of NTS serovars using culture techniques and biochemical tests, antimicrobial sensitivity testing using disc diffusion method of the commonly prescribed antibiotics and phylogenetic relationships using 16S rRNA were determined. RESULTS: The results showed that the overall prevalence of Salmonella was 3.8, 3.6, 5.9 and 2.6% for pigs, chicken, eggs and cows respectively. Two serovars were isolated S. Typhimurium (85%) and S. Enteritidis (15%) and these two serovars formed distinct clades on the phylogenetic tree. Forty percent of the isolates were resistant to one or more antibiotics. CONCLUSION: The isolation of Salmonella Typhimurium and Salmonella Enteritidis that are resistant to commonly used antibiotics from seemingly healthy animals and animal products poses a significant public health threat. This points to the need for regular surveillance to be carried out and the chain of transmission should be viewed to ascertain sources of contamination.

SELECTION OF CITATIONS
SEARCH DETAIL